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1.0 Introduction 
The project was proposed and conducted to identify and evaluate methods for integration of 
population dynamics with biosurveillance detection and characterization functions.   The study 
included investigation of existing biosurveillance capabilities and available software codes as 
proposed to establish a point of departure and relative baseline of functional performance. The 
project progressed to develop the proposed predictive modeling capability and to obtain data 
and prepare test codes for measurement of performance improvement, if any, to be realized 
through the integration of regional population dynamics. 

Significant efforts include negotiating with local healthcare, transportation and hospitality 
industry stakeholders to secure the needed information sources, and the development of 
detection software codes and predictive models.  The project has established interface 
agreements and obtained and integrated data needed for situational awareness from members 
of the hospitality industry, from transportation industry sources, and from health care 
providers.   

Several hypotheses were investigated as related to the project objectives.  A conceptual 
paraphrase of the hypotheses under test is that situational awareness and response can be 
improved by the integration of population and population mobility information with health 
monitoring and tracking functions.  This research focused on investigating methods and 
technologies potentially useful to mitigate impacts of pandemic disease or bio-weapon attack 
focusing on promising information integration, signal improvement, and noise reduction 
concepts.  Based upon our review of the literature the project is unique in the direct application 
of population dynamics to biosurveillance codes.   The study has made progress in developing 
and testing models and developing and testing algorithms and codes to improve representation 
of population dynamics in outbreak modeling and surveillance. 

The project was planned to leverage the unique combination of characteristics of Las Vegas, 
Nevada.   Factors of importance include the tourism based economy, the geographic features 
limiting surface travel points of egress and ingress, and the spatial concentration of visitors 
along a four mile strip of road.  The project was undertaken in partnership with the University 
of Nevada, Las Vegas (UNLV) who provided essential experience and credentials in 
epidemiology, the required Institutional Review Board (IRB), and both credibility and trust 
relationships for the health care community outreach effort. 
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2.0 Body 
Federal biosurveillance research investments since the 2001 Anthrax attacks are sizable but a 
fully operational capability has not been achieved.  The main factors limiting progress are 
legislative, but technical advancements are also needed.  Until data ownership decisions are 
made and codified and until the public is convinced individual privacy will be ensured, access to 
a stronger outbreak signal is unlikely.      

Solutions are further confounded by the nature of health care information technology business 
competition.  Systems and their data are non-standard because there is no mandate for 
standardization.  There is also no incentive for standardization.  Standards are not implemented 
due to vendor need for product discriminators and the non-universal yet continuing practice of 
retaining customers by ensuring the cost of changing processes and reshaping data are 
prohibitive.   Health data shaping costs have been leveraged to create barriers to market 
penetration by potential competitors.   These data issues along with legitimate privacy concerns 
and the lack of mandated standards of reporting and recordkeeping result in a very poor signal in 
a very noisy environment. 

Due to the poor quality of the data much outbreak surveillance research, and existing 
applications for monitoring and reporting are focused on the sparse data problem, background 
noise, and selective and sensitive methods to reduce false signals yet ensure a true signal is not 
missed.  

Meaningful integration of travel and infectious disease propagation information is highly 
applicable to effective epidemiology. As an awareness of the course and speed of a threat is 
essential to targeted intervention, an understanding of the course and speed of disease 
transmission is needed for complete characterization and optimal intervention during an 
outbreak or attack.  The development and integration of surveillance with population 
dynamics, especially travel, should be considered essential function for effective epidemiology 
in the computer age. 

The geography, demographics, relative centralization, transportation infrastructure, and highly 
refined tourism-based business focus have combined to make Las Vegas, Nevada a very 
suitable locale of interest for this research. Software tools have been prepared and tested which 
allow evaluation of the likelihood and timing of the spread of disease from an outbreak in Las 
Vegas to another city with emphasis on the projection of the spread of infection via surface and 
air travel.  

The project was planned to leverage some existing technologies and add value with the 
development of new capabilities for: inter-city air and road travel modeling; intra-city travel 
and activity modeling, and; extended threat characterization to include the relationship between 
population movement patterns and infectious disease predictive modeling. 
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2.1 Background 

Communicable disease models necessarily include factors provided to represent the aggregate 
state of understanding related to the disease, yet Hethcote (1976) writes demographic, social, 
cultural, and geographic factors must also be involved.    Apostolopoulos and Sömez (2007) state 
the transportation infrastructure has made humans the most effective vector of infectious 
pathogens.  Although there is motivation to characterize the factors influencing transmission, 
there is limited treatment in the literature regarding the integration of population dynamics with 
biosurveillance.  Could the daily and seasonal human population variance noise mask an 
otherwise detectable signal?  Can modeling mobility of and interaction between infectious and 
susceptible individuals provide increased utility for intervention planning?  The literature 
indicates many surveillance systems consider spatial information to improve detection 
timeliness, specificity, and/or sensitivity.  The integration of human population dynamics and 
biosurveillance is enabled by the advancement of technology and provides an opportunity-rich 
tested for the impact upon infectious disease modeling, biosurveillance, and public health.   
Kulldorf et al (2005) assessed the value of geographic information to enable focus on time series 
anomalies in consideration of proximity.   Models with consideration of population dynamics 
have also been studied but validation is challenging (Busenberg and Driessche, 1990), 
(Sattenspiel and Dietz, 1995), (Ma and Li, 2009), (Wagner, et al, 2006).   
 
Global models of disease spread patterns using air travel data have been prepared and evaluated 
including Rvachev and Longini (1985) and Grais (2002).    Hufnagel et al (2004) validated a 
forecast capability using data from a global outbreak of severe acute respiratory syndrome 
(SARS) which occurred in 2003.   Cooper et al (2006) stated their results argue air travel 
restrictions are impractical and would have little effect in delaying pandemic influenza due to the 
short serial interval.  Sattenspiel and Dietz (1995) integrated a regional mover-stayer, migration 
model with a Susceptible-Infectious-Removed (SIR) compartment disease model. In addition to 
metapopulation level simulators some individual-level modeling has also been conducted.  
Elveback and colleagues (1971) prepared individual-level micro simulation models which 
enabled modeling of variance within the human population such as contact and transmission 
heterogeneity. 
 
In air travel, factors such as proximity of passengers, length of time of travel, susceptibility of 
passengers and virulence of disease affect the transmission of virus from person to person. Even 
though the exchange of micro-organisms in pressurized cabin areas have been found to be lower 
than typical urban environments, the risk of exposure increases as time spent in air travel 
(Wenzel, 1996).  Recommendations to control epidemic spreads by imposing travel restrictions, 
particularly for pandemic illnesses, must consider financial impact (Epstein, et al, 2007) and yet 
cost of intervention ceases to be a factor once a sufficiently virulent infection begins to spread.  

While the concern about cross contamination among airline passengers is important, ultimately, 
the potential of exposed passengers and infected passengers to contaminate local populations is a 
public health concern. Much interest regarding the spread of disease as a result of airline travel 
has focused on progression of transmitting disease from one geographic area to another. Grais, et 
al (2004) modeled influenza forecasting based on air travel between specific American cities 
using data from the Centers for Disease Control and Prevention (CDC) and air traffic data from 
the Department of Transportation to predict outbreaks between specified large cities. Their 
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findings indicated inconsistencies in their predictive modeling and recommended the utilization 
of their models as approximations of forecasting (Grais, et al, 2004). A study of the H3N2 flu 
virus documented the pattern of global circulation of the disease from east and Southeast Asia 
(Russell, et al, 2008). 

At least one study found the transmission of influenza appears to be more closely correlated to 
air transportation flows rather than related to climate factors (Crepey and Barthelemy, 2007). 
Seasonal application of surveillance activities can also relate to airline travel. In the United 
States, influenza seasons are documented beginning October 1 of each year and are tracked for 
approximately 20 weeks, typically through mid-May (CDC, 2008). Research of airline 
transportation of the illness found that the rate of increased air transportation surrounding the 
Thanksgiving holiday serves as a modest predictor of influenza spread (Brownstein, Wolfe, and 
Mandl, 2006). However, a literature review reveals little about the effects of specific travel 
patterns on the spread of infection or on ways to improve surveillance through consideration of 
population dynamics. 

The project proposed to include the use of regional demographics, transient population 
characteristics, tourism statistics, transportation data, and health and environmental monitoring 
data to develop the necessary information technologies and resulting prototype capable of 
modeling the spread of infection in a transient population.  Timely threat containment must be 
the ultimate goal of surveillance therefore this demonstration project was proposed to investigate 
methods and develop related software to support improved intervention. Efforts included the 
work to define and validate functional and data requirements and to identify and assess the value 
of the available related datasets.  The goals of the project were proposed to test and demonstrate 
the models and detection and characterization capabilities.   
 
The project objectives include study of techniques and technology to represent travel modes to 
and from the Las Vegas study community, integration of population dynamics with existing 
biosurveillance methods, and working with local healthcare, transportation and hospitality 
industry stakeholders to establish the needed information sources. The community survey 
component of the research includes negotiating access to datasets and documenting issues and 
potential challenges to access.   The project has made significant progress in obtaining, 
analyzing, and staging data, surveying data access issues, and in preparing software for the 
modeling and integration of travel functions with health surveillance.   

This project leverages the unique characteristics of southern Nevada to study methods and 
develop capabilities useful to mitigate the effects of bio-weapons or pandemic disease.  During 
previous efforts integration and tracking functions used semi-synthetic data, and regional and 
national summary data based on actual historic influenza-like-illness (ILI) summary reports to 
CDC, tourism, and air and road travel data.  These historic temporal data for ILI, air travel, 
road traffic, and visitors were also used to support the investigation of algorithms for 
probabilistic modeling of transmission routes and patterns and to support demonstration system 
development and validation while awaiting actual provider data access.  

The research team investigated methods, information, and processing tools with potential to 
provide stakeholders with an understanding of the route and pace of transmission and functions 
to support intervention decision-making.  The integration of a travel model with detection and 
characterization functions is being studied to determine the advantages and complexities.  The 
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project has undertaken the tasks of development and integration of travel functions in parallel 
with the study of health, visit, and travel information availability and quality.  

These discussions were conducted in parallel with prototype development and demonstration-
database development activities, and were necessary to enable the completion of representative 
datasets for system validation. 

The data availability and quality study supports data synthesis and assessment of signal and 
noise characteristics. System and study design included the information and processing for 
detection, travel, information integration, and intervention planning with an emphasis on 
projection of the spread of infection through surface and air travel.  This data was staged for 
use in both system demonstration and validation and for use in simulation and scenario 
evaluation. 

A visitor population individual-level travel model was prepared, integrated and outputs 
evaluated.  Originally hosted on a dual processor single computer, the individual-level 
predictive modeling codes were modified to run on a Hadoop cluster of twelve workstations 
(from surplus on another project).  This resulted in performance improvement reducing 
simulation processing time significantly.  This cluster was later moved to a set of five T110 
Dell servers resulting in additional processing time reduction. 

The contact rate study was conducted first for the visitors in various behavior demographics.  
Later the contact rate study was expanded to resident worker and visitor interaction including 
surveys of local strip businesses and conventions.  This empirical study was needed to gain 
insights into factors affecting transmission. 

Codes were prepared for testing biosurveillance functions of detection and characterization 
with an emphasis on measurement of sensitivity, selectivity, and timeliness.  Both univariate 
CUSUM and EWMA codes and multivariate MCUSUM and MEWMA process control codes 
were prepared for testing.   These codes are currently being used for testing with syndromic 
time series data from five local hospitals over a five year timespan.  Tests are being conducted 
and planned for all presenting, visitors only, residents only both unfiltered, parsed data and 
with pre-filtering.  The plan includes testing of population and seasonal filters separately for 
comparison and in combination and evaluation of filter effects on outbreak detection. 

2.2 Literature Review 

Population figures based on public records and census are fixed values reflecting the number of 
people residing in an area.   Actual daily population of a city or county varies based on resident 
travel, migration, visitors, commuters, birthrate, and mortality.   These dynamics complicate the 
mathematical representation of infectious disease transmission.    However, without such 
consideration the models of infectious disease transmission are incomplete.   Korotayev (2006) 
offers encouragement noting that complex and chaotic behavior can be suitably represented at 
the macro-level by simple equations representing micro-level dynamics.   This concept is applied 
to modeling as one seeks to represent system macro-dynamics by sufficiently modeling 
individual micro-level actions.    Modeling when empirical data is incomplete due to business 
practice, privacy, competition, regulatory requirements, or resource constraints requires 
assumptions which in turn confound model validation (Camitz, 2010). 
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Much research using time-series detection methods relied on single variable approaches to obtain 
balance between speed and accuracy.  Attempts to improve detection timeliness without 
excessive false positives have led to the monitoring of more than one signal, which greatly 
reduces both the chance of missing an alarm and the likelihood of a false alarm (Wagner et al, 
2006). Evaluating a sliding time-window proved useful, but it became obvious that signal 
proximity had to be considered.  This led to the study of algorithms for the detection of spatial 
and spatio-temporal clusters (Wagner, 2006, Kulldorf, 2005). Attempts have been made to model 
geographic spread of disease and spatial patterns of reported cases and potentially related 
variables, however cross correlation with local or long distance travel has not received 
significant attention (Carley, et al 2004).  

Modeling infectious disease requires an understanding of human behavior and activities. While 
the severely ill can be expected to be less mobile (Longini et al, 2004) the mildly symptomatic 
and even those not infected, but coincidentally symptomatic, can drive the behavior of others 
by something as simple as a sneeze when the public is sensitized by knowledge of an outbreak, 
such as the during the recent novel H1N1 pandemic. At the macro level a pandemic or a 
smaller outbreak can be seen as an actor influencing an entity such as a city or a convention 
(Anolli, 2005).  The spread of an infectious disease is; therefore, impacted by social interaction 
both at the physical location and based on individual and group perceptions.  Social interaction 
factors transmission rate and more study appears to be warranted to support modeling of 
normal, baseline behavior and altered behavior. 

Magnusson (2005) stressed the need for more observation based study to improve models 
developed using purely statistical methods.  Contact rate varies substantially based on simple 
social activity patterns.  One influential pattern is the complex movement pattern of individuals 
and the resulting proximity of infectious and susceptible actors.  Another important pattern is the 
effect of information on behavior. A search of the literature reveals little study has been 
conducted on intra-city movement patterns, proximity, and contact rates1.   

The risk of spread of disease across geographic regions has increased due to the mobility of 
populations. Recommendations to control epidemic spreads by imposing travel restrictions, 
particularly for pandemic illnesses, must take care to account for economic costs (Epstein, et al, 
2007). The literature indicates most surveillance systems which consider spatial information do 
so only to improve detection timeliness, specificity, and/or sensitivity and do not account for 
population mobility. Although cross contamination is not uncommon during the transit process, 
spatial spread is more likely to occur once the population has reached destination points (Body et 
al, 2008; Ellis, Kress, and Grass, 2004; Wenzel, 1996). 

Research does indicate that better tools are needed and as well as a better understanding of how 
the transportation network impacts the spread of disease (Hufnagel et al, 2004).  They correctly 
note such research is essential to enable optimal intervention however, the value of travel 
restriction isn’t necessarily well understood.  Cooper et al (2006), argue air travel restrictions 
may be effective for SARS, but would not work to create a useful delay in the spread of 
influenza. These studies reflect valuable insights concerning the potential for, and limitations of, 
travel-restriction interventions and indicate the costs and limited efficacy of travel restrictions, 
mean such drastic measures should only be taken when warranted by the severity of the threat.  
Other studies rely primarily on data provided by the CDC through the influenza surveillance 
system (Grais, et al., Brownstein). While these may be useful for developing models of 
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transportation patterns, they do not provide the full picture of influenza and its relationship to 
travel. 

Privacy protection issues surrounding surveillance of disease outbreaks related to hotel guests 
has been the subject of previous research. The European Working Group for Legionella 
Infections (EWGLI) created a surveillance network called the European Surveillance Scheme for 
Travel Associated Legionnaires Disease (EWGLINET) for reporting cases (Joseph and Rickets, 
2009). This organization has been created to quickly identify and control for Legionnaires 
disease in the hospitality area (Cowgill et al., 2005).  This European network has noted the 
sensitivity of the hotel industry in sharing information and has had a strict requirement for 
protecting privacy for clinical and travel data. 

Disease outbreaks, of any size, can drastically affect a hotel and the consequences can be severe. 
EWGLINET was created to quickly identify and control for Legionnaires disease in the 
hospitality area (Cowgill et al., 2005). Once an outbreak has been detected, the accommodation 
site must go through a process to meet certain requirements in order to kill the disease and 
prevent it from spreading (Rota, Caporali & Massari, 2004). If these requirements are not met in 
a timely manner, the accommodation site’s name will be placed on the EWGLINET’s website 
(Rota, Caporali & Massari, 2004). In the United States, approximately 20% of reported LD cases 
were associated with travel (MMWR, 2007). The hope is that if clusters are detected early, the 
source can be quickly identified and treated. From a financial standpoint, hotels need to 
determine the source quickly so as to be able to return to normal business swiftly. 

Transmission of influenza appears to be more closely correlated to air transportation flows rather 
than related to climate factors (Crepey and Barthelemy, 2007). Seasonal application of 
surveillance activities can also relate to airline travel. In the United States, influenza seasons are 
documented beginning October 1 of each year and are tracked for approximately 20 weeks, 
typically through mid-May (CDC, 2008). Research of airline transportation of the illness found 
that the rate of increased air transportation surrounding the Thanksgiving holiday serves as a 
modest predictor of influenza spread (Brownstein, Wolfe, and Mandl, 2006). 

The 2009 H1N1 flu virus pandemic created a unique situation for modeling the spread of disease. 
In Mexico, especially the town of La Gloria, there began to be many cases of a respiratory 
illness. In La Gloria, 25% (591 cases) of the population became ill and the cause was discovered 
to be what became known as a novel H1N1 flu virus. Between March 10 and April 6, 591 flu 
cases were laboratory confirmed for H1N1 (Lopez-Cervantes et al., 2009). Cases were then 
found in the United States and Canada soon followed. By April 27, the first H1N1 cases in 
Europe were confirmed in Spain after 3 travelers returned from Mexico (Surveillance Group, 
2009). In the United Kingdom, 65 cases were confirmed between April 27 and May 11 
beginning with a couple returning from Mexico. France adopted an Influenza surveillance 
system in April after the first cases were reported around the world. By May 1, the H1N1 flu 
virus had arrived with travelers returning from Mexico.  As of July 6, France had 358 confirmed 
cases with 261 of the cases attributed to travel in Mexico, the United States, Canada, South 
America, non-French Caribbean Islands, Asia, Oceania and the United Kingdom.  The virus 
arrived in Greece by May 18 in a 19 year old male returning from New York City.  The second 
and third cases were two students returning from the United Kingdom, making these cases the 
first to be associated with another European country. Australia and New Zealand have 
experienced a more severe outbreak of the virus. For the same time period, Australia and New 
Zealand had 8 times the amount of cases as the United States.  According to the World Health 
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Organization (2009), there were over 6,000 deaths in 199 countries caused by the novel H1N1 
outbreak by November of 2009. This is a significant increase from May 2009 when the virus had 
only spread to 30 countries with a confirmed 5,231 cases (Boelle, Bernillon, & Desenclos, 2009).  

The ease with which this virus was able to spread poses many challenges.  No country or part of 
the world has been immune, reinforcing the need to study the effect that travel has on the spread 
of disease. Flahault, Vergu and Boelle (2009) created a metapopulation model to simulate the 
spread of disease through 52 major cities.  The state of the disease as it progresses was tracked in 
each city, following the four states of disease. These states are Susceptible, Exposed, Infectious 
and Removed (SEIR). Following their study, the authors found that there would be two major 
waves of the H1N1 flu virus.  The first would occur in the Southern hemisphere followed by a 
wave in the Northern hemisphere.  The tropical cities would be faced with a more moderate 
activity and the wave is estimated to have a longer duration (Flahault et al., 2009). 

The H1N1 virus is spread as other viruses and has many of the same symptoms as the seasonal 
flu which includes: fever, cough, sore throat, runny or stuffy nose, headache, chills, fatigue and 
body aches (CDC, 2009).  The CDC also reported that most of the original calculations of the 
virus were probably underestimated, perhaps by as high as 140 times fold (Reed, et al, 2009). 
Among the groups with a major under-reporting were those most susceptible to the disease, the 
age 5-24 population.  This is significant because the upper range of that age group would include 
a large proportion of Army personnel including 46% of the Army’s enlisted personnel and 11% 
of its officers fall into that age category (Department of the Army, 2005).  

According to the latest information on the disease, it appears likely that an infected person can be 
contagious usually from one day prior to showing any symptoms to 7 days after becoming 
symptomatic.  Importantly, contamination of animate and inanimate objects must also be taken 
into consideration.  Based on previous studies of influenza virus, it can survive on environmental 
surfaces and can infect a person for 2 to 8 hours after being deposited on the surface depending 
somewhat upon the ambient air temperature and relative humidity. 

Assumptions are often made regarding mixing, contacts, and infection when modeling infectious 
disease.  These assumptions mean transmission is an uncertain factor (Diekmann, 1996).    This 
uncertainty is obvious when reviewing the discourse on influenza outbreaks. What is the actual 
incubation period?  When does an infected become infectious?  Does viral shedding occur at a 
fixed or variable intensity?  Does sunlight or humidity significantly impact susceptibility or 
virulence?  Is there heterogeneity within the infectious population resulting in varied efficiency 
between those who spread the infection?  Does influenza actually transmit primarily by cough or 
sneeze?  Is a passing contact sufficient for transmission or is length of exposure also a factor? 
(Armbruster, 2007) (Longini, 2004) (Moser, 1979) (Kenah, 2011) (Camitz, 2010).  Contact 
requirements are also uncertain, but evidence supports a relationship between contact rate and 
outbreak intensity and duration (Haber, 2007). 

Much retrospective influenza epidemic analysis refers to the reproduction rate or Ro.  The 
analysis parameter Ro is a useful assumption and simplification.  Ro supports comparative 
evaluation of separate influenza pandemics and assessment of potentially achievable immunity 
levels through intervention.  Ro is often called the epidemic threshold, yet also the basic 
reproduction number, the reproduction rate, and the reproduction number.  As Ro is calculated 
assuming an entirely susceptible population it is a term representing the relative potential for 
harm.   However it is only in retrospect, when the harm can be quantified Ro can be estimated. 
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2.3 Methodology 

We proposed to investigate four hypotheses.  The principal hypothesis is modeling of a highly 
mobile, transient population can effectively represent actual movement of people as vectors for 
the transmission of infectious, biologic agents.  Accuracy will be measured if the resulting 
system can consistently detect influenza outbreaks faster than they were historically detected 
using conventional surveillance, and can consistently predict rate and distance of spread. 

A second hypothesis is the integration of high fidelity event signals can validate the design and 
implementation of a time and space sensitive biosurveillance system.  Once the system is 
validated using historic flu outbreak data, it is logical to demonstrate a realistic signal injector 
can effectively reproduce the results of using historic outbreak data.  If the high fidelity injector 
consistently provides the same results for the same signal in the past, then it can be used for 
probability modeling, what if analysis, and decision support. 

Our third proposed hypothesis is posterior probability capabilities of the validated 
biosurveillance system can be used to more rapidly and accurately characterize outbreaks.  This 
is the effort to determine whether a system using temporal and spatial data as well as historic 
outbreak data can more rapidly detect an outbreak using posterior probability methods. 

Finally, our fourth proposed hypothesis is predictive modeling using the validated 
biosurveillance system can support rapid threat containment.  If the second hypothesis is 
supported by the demonstration results, then we will evaluate whether the rate and spatial 
distribution predictions are sufficiently accurate to support a more targeted containment strategy. 

These coarsely worded statements are refined to measurable terms within the specific test. 

2.3.1 Hypotheses One Evaluation 
An initial test was planned to evaluate population change dynamics as a pre-filter for noise 
reduction in syndromic surveillance data.  This test is evaluating the effect of population 
fluctuations on detection factors such as signal recognition, timeliness of outbreak recognition, 
and false outbreak signal rejection.  These factors are the same as the typical measures of 
outbreak detection performance and are usually referred to as sensitivity, selectivity, and 
timeliness.  As defined these terms raise sufficient questions to require interpretation.  
Timeliness should be simply speed of outbreak detection once an outbreak has occurred, but can 
be measured from occurrence of the event to detection or from data receipt to detection 
(Conway, 2010).  Sensitivity is a term from engineering relating to the minimum signal that can 
be discerned and selectivity is unwanted signal rejection.  However, in non-theoretical syndromic 
surveillance choices during primary parsing are far more influential than receiver tuning.  Data 
cleansing, filtering, and assumptions necessary due to data inconsistency, anomalies, and 
ambiguities may attenuate or amplify the available and apparent signal.  Choices when mapping 
the chief complaint to an infectious agent influence amplitude and frequency in both the signal 
and the background noise and syndromic data is pre-diagnosis.    Selecting standard or at least 
often used syndrome categories has the potential to reduce this effect, but at best it is subjective 
analysis of subjective primary data which results in either an ideal sort of unreliable information, 
or, more than likely, a less than ideal one.  Opportunity is presented for additional work in this 
area to augment study of syndrome categorization by Sholer (2004), Okhmatovshaia et al (2009), 
Conway et al (2010), and others. 



 13 

Test of this hypothesis was proposed to include the use of existing biosurveillance algorithms 
and codes.  The ambition, at the time of statement was measurement and contrast using accepted 
best practice.  However naïve and ambiguous that clearly appears, the receipt of permissions to 
access data does provide broad opportunity for comparison with theoretical syndromic 
surveillance research.  Consistent with that intent, this initial test and subsequent tests to evaluate 
population dynamics are defined to parallel and extend the research of others and contrast as 
possible with baseline results from prior testing.  Where possible this is accomplished using the 
actual biosurveillance codes and information presentation developed or used by the selected 
previous study. 

Computer-aided health surveillance based on reported syndromes depends upon algorithms to 
detect when rising case counts exceed a threshold indicative of an outbreak (Shmueli, 2006).   
Performance tests of these algorithms fill the literature, but effective comparison is challenging 
due to the qualities of the data. Syndromic surveillance studies using synthetic time series may 
include i.i.d. assumptions, however review of data indicates actual syndromic surveillance data 
typically violate such assumptions (Shmueli,2006) (Burkom, 2006). 

The Multivariate Exponentially Weighted Moving Average (MEWMA) statistical process 
control chart tests variation in the sample mean using the exponentially weighted moving 
average (Lowry, 1992).   An observation is compared with the mean of past observations within 
a time range where the moving average is calculated using weighted values.  Typically values 
used in calculating the moving average are weighted so that the most recent observations have a 
greater influence on the running mean value.  In manufacturing, deviations of the mean 
exceeding a threshold create an alarm signal to indicate an out of tolerance condition.  Records 
of patients presenting at emergency departments (ED) can be parsed and shaped to create a time 
series which is somewhat similar to observed manufacturing process control data.  These ED 
case counts vary by day, season, and situation.  MEWMA charts use a sliding time window to 
calculate mean values and test for a condition which exceeds a selected threshold.  Both above 
and below threshold conditions are monitored in manufacturing processes, therefore MEWMA 
algorithms applied to outbreak detection must be modified to be directionally constrained.  Joner 
et al (2006) modified the MEWMA introduced by Lowry et al (1992) to be directionally 
sensitive. 

Once the data was available and ORP approvals received the provider data was reviewed and 
prepared for use.  Missing entries were addressed and approaches to data filtering discussed 
followed by test preparation.  Data normalization, anomaly removal, binning of syndromes, 
and preliminary data analyses were conducted in preparation for test. 

Also in preparation for testing, the project team evaluated some available, existing 
biosurveillance codes for suitability including SYDOVAT, Trisano, Real-time Outbreak 
Detection System, EpiFire, Global Epidemic Model and the Global Influenza Surveillance 
Network.  However, none of these systems were selected. 

The test approach for hypothesis one includes all project testing but initial tests were planned 
to include MCUSUM and MEWMA and univariate CUSUM and EWMA detection codes.  
These tests are intended to enable evaluation of the effects and benefits of separation of the 
visitor and resident populations for detection purposes and the effects and benefits of pre-
filtering time series data with population variance and other noise-component effects.  Time to 
signal, missed outbreaks and false positives are measured.  CUSUM and EWMA codes have 
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are coded in JAVA and MCUSUM and MEWMA codes have been prepared from MATLAB 
codes by porting those codes to GNU Octave. 

The MEWMA codes were selected from prior biosurveillance research in keeping with the 
concept proposed to use existing and more importantly previously evaluated and documented 
capabilities.   The MATLAB multivariate SPC codes were modified only as needed to port the 
codes to GNU Octave and to enable the selected use of either the researcher’s synthesized data or 
empirical ED case counts from the local healthcare providers.  Codes were selected from 
research funded by the Office of Naval Research at the Naval Postgraduate School by Fricker et 
al (2007) and Hu and Knitt (2007). 

The MEWMA baseline is created using residuals from Burkom et al’s (2006) dynamic least 
squares regression of the time window data which Hu and Knitt demonstrate smooths seasonal, 
day of the week, and holiday effects within the sliding baseline.  Fricker (2007) shortened 
Burkom’s 56 day baseline claiming optimal performance typically required windows of between 
30-45 days with Burkom’s 56 days as an upper limit.  

This testing replaces the theoretical constructs used by Hu and Knitt (2007) with observed 
sample data from the five participating Las Vegas healthcare providers.   his required 
replacement of the multivariate time series data, selected control parameters, and replacement of 
the prior researcher’s covariance matrix with a covariance matrix calculated for the sample. 

Investigation immediately reveals the contrast between theoretical synthetic data based on 
modulation of Gaussian white noise and actual syndromic surveillance time series data.  
Additionally, Fricker chose λ = 0.2 based upon observed performance and Montgomery’s (2001) 
recommended range of 0.05 <= λ= > 0.25 for the univariate EWMA.  Using weight factors 
within the range recommended by Montgomery or at the value selected by Fricker results in false 
positives within the unfiltered sample.  Testing with higher weights on the most recent 
observations reduces these false signal detections. 

2.3.2 Hypotheses Two Evaluation 
Evaluation of the second hypothesis employs semi-synthetic data and high-fidelity outbreak 
signal injection.  Codes have been prepared in GNU R to produce synthetic time series and 
outbreaks.  Preliminary tests with provider data indicate the preparation of the semi-synthetic 
series requires modification from prior research to preserve zip code association. 

2.3.3 Hypotheses Three and Four Evaluation 
Evaluation of hypotheses three and four begins with the predictive individual-level travel and 
infection model.  Tests are in progress using historic CDC ILI data and both road and air travel 
data to model the paths and pace of infectious disease spread through travel.   This input-output 
(I/O) intensive model is hosted on the cluster to leverage the Hadoop Map Reduce feature to 
allow parallelization of the I/O and processing.  

Development of the mobility model began with the NDOT Annual Traffic Report for years 
2005 through 2011. The automated traffic recorder section of the report includes a complete set 
of what the NDOT calls ‘comprehensive summary report’ pages from each of the 
ingress/egress routes for Las Vegas, Nevada.  This information is organized by the ATR station 
number which is a unique identifier.  Each ATR is further classified by its county, the 
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functional classification of the roadway, and the ATR location.  The Las Vegas metropolitan 
area can be accessed by a very limited number of major highway routes.   

Typically less than half, in the past five years 43% - 47%, (GLS Research, 2008) of Las Vegas 
visitors travel by air.  An air travel model was prepared beginning with study of the US Bureau 
of Transportation Statistics (BTS) (Citation needed) data available online via queries and 
reports.  The BTS data were used to create tables of aircraft types, seating configurations, and 
passenger capacity for each aircraft model and configuration used by airlines serving Las 
Vegas McCarran International Airport, airport code LAS.  This study is intentionally focused 
on the airports and airlines having direct flights to and from LAS.  Over the twelve year 
timeframe coinciding with the road travel model 297 US and international airports had direct 
flights to or from LAS with an annual average number of 220 airports serving passengers with 
direct flights to or from LAS during any single year within the model.   

The research team sought to identify hotels that would be willing sources of information to 
improve public health surveillance. We identified 19 hotel ownership companies representing 40 
different properties. Of these ownership chains, the largest in order of properties owned were 
MGM-Mirage (12 strip properties owned on the Las Vegas strip); Harrah’s Entertainment (7 
properties owned on or near the Las Vegas strip); Boyd Gaming (3 properties on/near Las Vegas 
strip downtown; 4 Coast properties owned, 2 near LV strip and 2 off strip properties); Wynn 
Resorts (2 properties on Las Vegas Strip); and Sands Corporation 2.  The project team 
interviewed security and risk management personnel and examined related artifacts to determine 
the types of information they collect on guests who become ill or injured, date and time of guest 
complaint/variance, whether they maintain this data in any storage capacity, how they respond to 
guests who become ill, the disposition of those guests, and both their interest and willingness to 
participate in the research project. 

Project efforts included the development of software providing functions for air and surface 
mobility modeling and simulation of travel and infection in a locale of interest.  Advancements 
in computer performance have enabled modeling of travel and disease transmission at the level 
of the individual traveler.  Individual-level models (ILM) enable modeling of heterogeneity 
and variance not possible in metapopulation infection spread models.  Datasets were prepared 
from airline flight schedules, aircraft model and seating configurations, and from Nevada 
Department of Transportation (NDOT) automated traffic recorders for a five year span. 

Due to the large number of datasets and the size of some of those datasets the time required to 
process data for simulation and testing was considerable.  Some work was done to improve 
performance by standardizing the interfaces between components.  This allowed distribution of 
application components over multiple processors.  This did improve performance but the 
application’s performance was mainly impacted by input and output requirements during 
simulation operation which were not significantly mitigated by process distribution.  The input-
output processing issue was addressed by parallel processing and by using the Map-Reduce 
feature of a Hadoop cluster.  Procedures for operation of the cluster are provided in Appendix 
B. 

The ILM includes a simulator for disease or infectious agent within the regional population and 
allows modeling of contact and transmission heterogeneity. The disease simulator is integrated 
with an individual travel model by simulating persons of epidemiologic interest and their time, 
path, and mode of transportation.  Disease or infectious agent scenario files are used to set the 
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parameters for average disease latency, virulence, and duration of infectivity.  Influenza-like-
Illness (ILI) was selected as the infection for this study based on availability of syndromic data, 
CDC sentinel seasonal and pandemic flu outbreak histories, and the available discourse related 
to influenza and biosurveillance. 

Following data preparation and staging, and hand optimization of codes, the processing and I/O 
requirements are not out of reach of a workstation cluster with cycle-execution approximately 
twenty minutes.  Tests were conducted using a dual Xeon processor server initially requiring 
approximately twelve hours per cycle. A SUN V880 with four-processors and two RAID 
arrays was available for use and performed no better than the dual Xeon server.  Excessed and 
fully-depreciated workstations from another Federally funded program were then assembled 
into a twelve-computer cluster and loaded with open-source operating systems and component 
open source parallel processing software.   This Dell Precision 360 cluster was capable of cycle 
times of less than thirty minutes.  However, that equipment needed to be returned under 
contract related regulation so five Dell T110a servers were acquired in an attempt to match the 
performance of the twelve workstation cluster.   This five-server cluster resulted in cycle times 
of approximately twenty minutes. 

2.3.4 Outreach and Data Collection 

2.3.4.1 Provider Data 
Access to data for testing required interview of stakeholders and data owners to investigate 
issues and constraints.  Project researchers conducted a series of structured meetings with local 
stakeholders and visited local hospitals, clinics, and private practice physicians to investigate 
technical, operational, and policy issues related to surveillance information access.   These 
outreach activities include discussion the Emergency Department data qualities and potentially 
useful interface protocols.  Through these interactions data was obtained from five local 
hospitals:    

• Valley Health Systems (3) 
– 2006-2007 = 110,165 visit records 
– 2008-2009 = 112,638 visit records 
– 2009-2010 = 123,450 visit records 
– 2010-2011 = 148,948 visit records 

 
• Sunrise Hospital (1) 

– 2007 = 79,398 visit records 
– 2008 = 88,623 visit records 
– 2009 = 97,312 visit records 
– 2010 = 100,381 visit records 
– 2011 = 110,005 visit records 

 
• University Medical Center (1) 

- 2004 = 65,534 visit records (years overlap) 
- 2005 = 53,047 visit records (years overlap) 
- 2006 = 12,867 visit records 
- 2007 = 10,080 visit records 
- 2008 = 10,197 visit records 
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• UMC HL7 Feed 

- ~9.9 million messages  
- ~2.7M ER,  ~7.2M ADT 
- > 1 message per visit 

2.3.4.2 Contact Rates 
As a facet of the study to determine how disease spreads through the population of Las Vegas 
and especially the visiting population, it is necessary to approximate the social interactivity of 
individuals that frequent the Las Vegas Resort corridor.  In prior work, in order to define actual 
contact rates to populate our Susceptible, Exposed, Infected, Recovering (SEIR) models, 
researchers determined rates for the most common gaming behaviors for Las Vegas visitors.  
This year, to further define contact rates, researchers investigated Las Vegas residents working 
on the Las Vegas Strip and convention attendees. 

Residents Working on the Las Vegas Strip 
During research to support our biosurveillance project we needed the figure of Las Vegas 
residents who worked on the Las Vegas Strip, The area on Las Vegas Boulevard from the 
stratosphere Tower on the North to Mandalay Bay on the South. Data was readily available for 
employees working in casinos from research done by the Center for Gaming Research at The 
University of Nevada Las Vegas (UNLV). That total was 120,000. The number of Las Vegans 
working for non-casino entities; however, was not available.  

To find this number Dr. Henry Osterhoudt conducted a survey of all the businesses on the strip. 
The survey included: retail outlets (stores, kiosks, and  mini-marts), restaurants (fast food and sit 
down), night clubs, valet parking, tour companies, ticket vendors, rental agencies, massage 
parlors, street performers, street vendors, motels ,  tattoo parlors, and time shares. The researcher 
visited 642 separate businesses. The number constitutes all the businesses on the strip including 
those physically located in resorts but not owned by the casino corporation.  These entities rent 
space from the resort but are owned by a separate entity. The number includes all the businesses 
in the various malls along the strip:  Stratosphere Tower Shops, Fashion Show Mall, The Grand 
Canal Shoppes at the Venetian, The Shoppes at the Palazzo, The Forum Shops, Via Bellagio 
Shops at Bellagio, Miracle Mile Shops at Planet Hollywood, Crystals at MGM Mirage City 
Center, and Mandalay Place at Mandalay Bay. In addition other casinos have groupings of shops 
in or adjacent to their properties, for example between Wynn and Encore or between Luxor and 
Excalibur.  At each business the researcher asked a responsible manager or the person manning 
the business or kiosk how many people worked at the establishment in a 24 hour period. Some of 
the establishments had business hours ranging from 8 to 16 hours. Some were open 24 hours a 
day. 

The survey took three weeks and determined that a maximum of 20,156 individuals work on the 
strip in non-casino owed businesses on any given 24 hour period. 

Contact Rates for Convention Attendees 
Researchers surveyed contact rates for convention attendees in Las Vegas. The research was 
done during the Consumer Electronics Show (CES) 10-13 January 2011 and during observations 
of smaller conventions at various resorts during the year. The CES is a huge convention staged at 
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the 3 million square foot Las Vegas Convention Center (LVCC) which includes 2 million square 
feet of exhibition space and 243,000 square feet of meeting rooms and the 2.2 million square foot 
Venetian Convention Center. The show was attended by over 150,000 people. During the 
convention researchers acted as convention goers and recorded their contacts in two ways.  The 
first set of numbers was determined by counting the total number of contacts that came within 
three feet of the front of the researcher. The numbers were recorded over a three day period as 
the researcher acted as a convention attendee arriving at the convention, registering, and then 
touring all the exhibits. The second set of numbers was determined as those contacts that lasted 
longer than three minutes. This set was determined by simulating a convention goer who was 
conversing with convention vendors or listening to vendor presentations. As in the research of 
gamers the largest numbers of contacts were accumulated during transit of the convention.  
Researchers recorded their contacts in 15 minute intervals from the time they exited their 
vehicles until they returned to their vehicles at the end of the day.  Researchers were Las Vegas 
residents and thus not staying at a resort hotel.  Contacts tallied 357 per hour although the 
numbers varied greatly depending on whether the researcher was actually moving about the 
convention or simply getting there or returning to their transportation. 

The contact rate dropped markedly when the time of 3 minutes was included as a parameter. 
Researchers began their research by attempting to count both types of contact but quickly 
realized that this was extremely difficult  so a separates effort was made to specifically determine 
the contact rate only for the three minute parameter.  This contact rate was significantly smaller 
than the prior rate with an average of 3 to 6 per hour.  Estimating the number of convention goers 
who experienced this contact rate was possible only by an educated observation, not an actual 
count. The estimate is about 15% of convention goers seemed to be in this category. But the 
figure could skew higher.  

As with gamers the majority of contacts were experienced while traversing the convention. 
Choke point and popular exhibits also contributed to the larger numbers as did the huge number 
of attendees who taxed even the huge capacity of the LVCC.  This convention was one of the 
largest in total attendance, but it is not out of the norm for contacts of attendees. Smaller 
conventions use smaller venues, but the contacts of attendees are similar. Movement and choke 
points at the various venues in Las Vegas, each casino resort has some convention or meeting 
space which accommodate various size meetings or events, are for the most part consistent in 
elevating contact rates. It should be noted; however, that architecture does affect contact rate to 
an extent. Newer convention and meeting facilities are designed with larger hallways, more 
spacious meeting rooms and multiple routes of ingress and egress.  The sum total of these 
architectural advances is to decrease the contact rates for transiting conventioneers and meeting 
attendees. Older facilities, many of which are still in use, do not have the wider routes and more 
spacious venues of the newer properties. For the largest conventions which all use the LVCC 
convention facilities this increases the contact rate because the Las Vegas Hotel and Casino, 
Previously the Las Vegas Hilton is an older facility and is contiguous to the LVCC.  The LVCC 
itself is a huge facility but it encompasses routes which constrict movement of huge convention 
audiences and it does not have sufficient dining venues to handle the huge crowds for the largest 
conventions without congestion. In fact although the LVCVA tries to alleviate the congestion as 
much as possible additional dining venues would not prove viable.  Likewise the Sands Expo 
Convention Center is an older facility and it like the LVCC has its share of chokepoints even 
though the resorts to which it is connected, The Venetian and The Palazzo, are brand new and 
state of the art.  
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In addition the growing number of attendees at some of the more popular events; the CES is a 
good example, contribute to the crowding. The LVCVA attempts to alleviate this problem by 
expanding the convention to multiple venues at different locations. The problem is that at any 
convention certain exhibitors have more popular exhibits than others and these exhibits whether 
because of the exhibitor or the product cause conventioneers to congregate at those locations. At 
the CES new electronics (The LG exhibit for example) and new vehicles drew capacity shoulder 
to shoulder crowds.  In some cases exhibitors who have exhibit space near entrances to the 
convention floors, space which is highly desired, also contribute to congestion as attendees 
crowd together to observe the displays or the interactive experience.  Again savvy exhibit 
designers seek to grab and hold the attention of attendees and occupy the space near the entrance 
contribute to the congestion largely by design.  These factors, despite the best efforts of the event 
organizers, greatly effect congestion and drives up contact rates.   

Additionally at the LVCC security is tasked with admitting only authorized attendees. At each 
entrance security personnel check identification badges. This creates bottlenecks and further 
contributes to elevating contact rates as attendees queue up to enter the convention hall or go 
from one building to another. Each entrance has another security checkpoint and the 
identification process is repeated. 

Conventions habitually last for a period of days which also elevates contact rates.  Meeting and 
events which last for one day do not afford the attendees sufficient exposure time to effect an 
increase in contact rates so a multi-day convention is the most representative and the best 
laboratory in which to determine an accurate effective rate. 

Most studies of disease have assumed a homogeneous contact rate instead of doing the research 
to accurately determine the actual rate of contacts. This study has done extensive research to 
provide actual data that models subject behavior. Our researchers have spent a good deal of time 
modeling both gamer and convention attendee behavior on the Las Vegas strip. We have used 
data gathered by both the Las Vegas Convention and Visitors Authority and the University of 
Nevada Las Vegas Center for Gaming Research to focus and refine our research. This data 
served as a departure point to permitting our personnel to maximize the effectiveness of our 
activities. For example we knew percentages of gamers who played various games so we were 
able to focus on behavior of gamers who played the most popular games thus providing the 
largest sample of visitor behavior. We also knew the size and frequency of conventions and the 
use of convention and meeting space so we were able to most effectively employ our researchers 
to acquire real contact data. 
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2.4 Analysis 

2.4.1 Provider Data 
The following report summarizes and analyses the syndromic time series data from participating 
providers and was prepared by Dr. Chris Cochran of UNLV. 

 

Christopher R. Cochran, Ph.D.; Subcontractor PI 
University of Nevada Las Vegas 

School of Community Health Sciences 
 

Bio-Surveillance of a Highly Mobile Population 
Understanding Influenza and Influenza-like (ILI) Symptoms 

Influenza is considered a seasonal illness typically spanning October 1 – Mid-May of each year. 
Therefore, for historical data collection purposes, annual influenza and influenza-like illnesses 
must be categorized in the appropriate time frame. The Centers for Disease Control and 
Prevention (CDC), monitors influenza from state and local health departments, federal agencies 
such as the Department of Defense and Veterans Affairs, and sentinel sites including physician 
offices, health care clinics, hospital emergency departments and urgent care facilities, and the 
Department of Defense and Veteran’s Affairs (CDC, 2008). According to the CDC, ILI includes 
fever, headache, fatigue, cough, sore throat, runny or stuffy nose, body aches and diarrhea and 
vomiting (more common in children than adults). They note that it is impossible to diagnose flu 
based presence of symptoms alone because other diseases can have similar symptoms. The only 
way to confirm influenza is through the use of clinical testing (CDC, 2008). 

It is our intent to develop a system whereby patient visits can be submitted for the project that 
relate to influenza like illness (ILI) on an ongoing real time or near real time basis. To develop 
and adequate model for understanding visitor utilization of local hospitals and providers, the 
project also sought to collect historic patient visit information for the previous five years. By 
obtaining patient zip codes as part of the data collection process, an analysis of the number of 
visitors utilizing health care providers can assist in developing the transportation model. This 
analysis will also allow us to compare how well chief complaints match up to diagnoses. 

Based on four- year data trends as reported by the Nevada State Health Division, reports of ILI 
illness have increased significantly at the beginning of each year, typically around the 10th week 
of the influenza season. In Figure 1, the actual peaking of ILI begins in early December, then 
drops slightly during the holidays and begins to show rapid acceleration at about week 3 of the at 
the beginning of the year. This is notable because the Las Vegas visitor volume drops during the 
month of December then picks up significantly in January (LVCVA, 2008). 

Data Needs 
ILI typically refers to fever and one of the following: headache, cough, sore throat, runny/stuffy 
nose, body aches, diarrhea and vomiting. However, some symptoms may not be present during 
patient visit and diagnosis may reflect a more general description such as lower respiratory 
infection, pneumonia, or upper respiratory infection. To that end, the project needs to identify all 
complaints that can fall into the ILI category. For the purpose of this study the following data 
needs were identified: 
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 Pseudonymized linker (patient de-identifier measure) 
 Event time and Place (for the patient encounter) 
 Age. Age may be an important components since children, for example, may have different 

influenza like symptoms (e.g., vomiting) than adults. 
 Zip code. 5-digit zip code or 3-digit for sparsely populated zips.  
 Patient classification. Hospital patient classifications generally include emergency room, 

inpatient, outpatient, or other services such as laboratory or radiology. In this case, only 
emergency room classifiers are necessary since we are primarily interested in ambulatory 
patients. Outpatient information would typically apply only for follow-up visits. Inpatient 
classification may be useful, but not necessary for this project. 

 Chief complaint. This is the patient reported reason for seeking care. Key for this project. Need to 
understand how this information is collected and coded. (See section on ICD-9 coding criteria). 

 Illness onset by date/time (desirable for this study but is not routinely collected for electronic data 
entry). Probably would require review of physician, nursing or triage notes. 

 Diagnosis/Injury code. Diagnosis or diagnoses assigned from patient visit. This is the billing code 
that will be the most reliable for case identification and confirmation. However, the availability of 
this data will vary from hospital to hospital.  

 Diagnosis type (preliminary, interim, final, admitting).  
 Diagnosis date/time. Should be easily available for date. May not be consistent for time. 
 Discharge disposition. Essential element but may only be known as admitted to hospital, sent 

home, AMA, other). 

To determine the locale of visitors and potential onset of their illness, other useful information 
would include visitor place of stay, days since arrival, and days until departure. 

Data Collection and Methodology Techniques 
Hospital emergency room data for the years 2006-2010 were used for this study. The data was 
compiled from hospitals that have the closest proximity to the Las Vegas, NV strip corridor. All 
hospitals included in this study are located within (X) miles of that corridor. Through interviews 
with local resort security operators, Southern Nevada Health District, and emergency services 
personnel, these hospitals were identified as having the greatest likelihood of providing 
emergency services to visitors residing on the strip corridor: University Medical Center, Sunrise 
Medical Center and Sunrise Children’s Hospital, Desert Spring Medical Center, Valley Hospital 
and Medical Center, Spring Valley Medical Center. 

An IRB from the previous study was updated and resubmitted to the UNLV Office for the 
Protection of Human Subjects prior to the collection and received final approval by the UNLV 
IRB in October of 2011. Final approval of the IRB project from the Human Subjects Protection 
Scientist (General Dynamics) Human Research Protection Office (HRPO), Office of Research 
Protections (ORP), U.S. Army Medical Research and Materiel Command (USAMRMC) was 
given approval in February of this year. Therefore, data collection for the project was delayed 
until the final approval from the sponsor agency.  

Data files were transmitted through secure email files with expiration dates upon acceptance of 
the files from UMC and Valley Hospital. Data from Sunrise Hospital was transmitted into a CD. 
Data was formatted into Excel comma delimited files.  
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UMC has been a partner in this project since project year 1. Both UMC and Sunrise Medical 
Center represent the largest hospitals in Southern Nevada thus experience higher volumes of 
emergency room visits. UMC also operates a level one trauma center, but data from that 
emergency unit is not included in this analysis since it is not likely to have The data from all 
other hospitals was collected during the third funding year of this project. Desert Springs 
Medical Center, Valley Hospital and Medical Center and Spring Valley Medical Center are all 
part of the Valley Hospital Systems (VHS). The data collected from these hospitals was provided 
by their central data source.  All data providers were given the data elements for the collected 
data. Some fields were inconsistent and one of the most important data components, “Chief 
Complaint”, was available for only one year of the VHS data. Data was collected in an excel data 
delimited format.  

In the period 2006 – 2010 the number of visitors to Las Vegas ranged from just over 36 million 
more than 39 million per year. The period 2007 to 2009 saw decreasing number of visitors to Las 
Vegas due primarily to the economic recession. However, in 2010 the numbers began to climb 
again to more than 39 million visitors, still below the averages of 41 million tourists reported in 
our previous study. 

For this study, data was collected for a five year period from the hospitals for the period 2006-
2010. The data elements considered in this study included the following:  

De-identified patient code, admission date, admission time, discharge date, Chief Complaint, up 
to five diagnosis (ICD-9) billing codes, age, sex and patient zip code.  

There are some gaps in the data that will be addressed in a follow-up report. These gaps include 
missing data for 2008 from the VHS hospitals and missing data from 2006 from Sunrise 
Hospitals. The table below illustrates the data collected from the hospitals. The data indicates 
that more than 15% of the ER visits to area hospitals are by visitors (see Table 1). 

Table 1 – Hospital emergency room utilization by local residents and visitors 

 
HOSPITAL 

Total UMC SUNRISE SPRING VALLEY VALLEY DESERT SPRG 

local 0 Count 27901 74924 32287 23310 22399 180821 

% within HOSP 8.4% 15.8% 20.5% 14.4% 21.4% 14.7% 

% of Total 2.3% 6.1% 2.6% 1.9% 1.8% 14.7% 

1 Count 302691 400438 125010 138175 82092 1048406 

% within HOSP 91.6% 84.2% 79.5% 85.6% 78.6% 85.3% 

% of Total 24.6% 32.6% 10.2% 11.2% 6.7% 85.3% 
Total Count 330592 475362 157297 161485 104491 1229227 

% within HOSP 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

% of Total 26.9% 38.7% 12.8% 13.1% 8.5% 100.0% 
 

The addition of the other hospital data suggests that an even greater volume of patients visit the 
private hospitals than visit the county’s only public hospital. This may be due likely to the 
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overcrowding of the public hospital and the insured nature of the area’s visitors. But the 
additional data is of major importance in trying to determine the utilization of Southern Nevada 
hospital emergency rooms by visitors to the community.  An analysis was conducted to 
determine the top DRG elements for the report. Based on the information provided, the following 
indicate the main codes billed by the hospitals (Table 2). 

Table 2: : ICD Code Frequency of Visitor Utilization of Hospital ERs 
  University Medical Center   

Rank ICD-9 Code Diagnosis Frequency Pct. 
1 789.00 Other symptoms involving abdomen and pelvis 31182 7.5 

2 780.6 Fever and other physiologic disturbances of temperature regulation 15830 3.8 

3 729.5 Pain in Limb 14985 3.6 

4 786.2 Cough 13809 3.3 

5 V71.4 Observation following other accident 13163 3.2 

6 787.03 Vomiting alone 10250 2.5 

7 784.0 Headache 10087 2.4 

8 780.60 Fever and other physiologic disturbances of temperature regulation 9151 2.2 

9 724.5 Fever and other physiologic disturbances of temperature regulation 8794 2.1 

10 786.50 Chest pain 8372  
2 0 

  Sunrise Hospital and Medical Center   

Rank ICD-9 Code  Freq. Pct. 

1 V71.9 Unspecified Diagnosis 12785 2.7 

2 465.9 Acute upper respiratory infections of multiple or unspecified sites 10281 2.2 

3 305 Nondependent abuse of drugs 9090 1.9 

4 648.93 Issues of Pregnancy 9053 1.9 

5 780.6 Fever and other physiologic disturbances of temperature regulation 8518 1.8 

6 786.59 Other discomfort in Chest 8408 1.8 

7 786.5 Chest pain 7005 1.5 

8 599 Other disorders of urethra and urinary tract 6440 1.4 

9 382.9 Other symptoms involving skin and integumentary tissues 6108 1.3 

10 780.2 Syncope and collapse 5965 1.3 

  VHS Hospitals   

Rank ICD-9 Code  Freq. Pct. 

1 789 Other symptoms involving abdomen and pelvis 16581.0 3.1 

2 305 Nondependent abuse of drugs 12758.0 2.4 

3 786.59 Other discomfort in Chest 10644.0 2.0 

4 786.5 Chest pain 8740.0 1.6 

5 465.9 Acute Upper respiratory infection 7806  

6 780.2 Syncope and collapse 7195.0 1.3 

7 599 Other disorders of urethra and urinary tract 6748.0 1.3 

8 784 Symptoms involving head and neck 5758 1.1 

9 V68.9 Unspecified administrative purpose 5065 0.9 
*10th ranked in VHS unable to determine. 
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The data in the tables above illustrate one of the major problems in using ICD9 data codes for 
early identification of outbreaks such as flu. While the data from the UMC hospital indicates a 
greater likelihood of potential influenza like illness (ILI), the data from all of the other hospitals 
appears to be more consistent in their reporting measures. To calculate the data included in these 
tables, an analysis was conducted of all ICD-9 codes provided (up to 6 codes in some cases). 
One of the limitations of this data pertains to the Valley Health Systems hospitals which only 
reported on ICD-9 code for their cases. Thus, it is possible that inclusion of more than one code 
would have captured a truer assessment of the patient services. In examining the data from the 
other hospitals, the great majority of cases had more than one ICD-9 code reported, thus, it 
appears unlikely that the cases provided in the VHS hospitals’ data would have included less 
than one code. It is also possible that coding errors, changes in data collection system formats, or 
other factors including time needed for proper data submission contributed to the lack of multiple 
codes in these cases. 

In Table 3, we sorted the top ten ICD primary complaint code (the first billing code assigned to 
patients). In this table we use only the first ICD-9 code due to missing values from the VHS 
hospitals. 

Table 3: Top ICD-9 Codes, Visitors vs. Local Residents for primary ICD-9 code 
Visitors (2006-2010) Local Residents 2006-2010 

Dx  Freq. PCT. DX Code Frequency Percent 

Nondependent abuse of drugs 305 9008 5 Unknown DX V71.9 31180 3 

Syncope and collapse 780.2 5406 3 Other symptoms involving 
abdomen/stomach 

789 24062 2.3 

Unknown DX V71.9 3749 2.1 Other discomfort in chest 786.59 20042 1.9 

Other discomfort in chest 786.59 3597 2 Other symptoms involving 
abdomen/stomach 

789 16122 1.5 

Chest pain 786.5 2848 1.6 Chest Pain 786.5 12907 1.2 

Other symptoms involving 
abdomen/stomach 

789 2657 1.5 Other disorders of urethra and 
urinary tract 

599 12627 1.2 

Symptoms in digestive sys 787.03 2445 1.4 Flu Symptoms 465.9 11789 1.1 

Other gastrointitis 558.9 2263 1.3 Issues of soft tissue 729.95 11630 1.1 

Other disorders of urethra 
and urinary tract 

599 2077 1.1 Nondependent abuse of drugs 305 11542 1.1 

Contusion 920 1578 0.9 Chest Pain 786.62 10613 1 

Pneumonia (#12) 486 1483 0.8 Fever 780.6 10150 1 

Acute sore throat NOS (#18) 462 1162 0.6 Acute sore throat (NOS) (#22) 462 6923 0.7 

Flu symptoms (#24) 465.9 994 0.5  784 9998 1 

Fever (#25) 780.6 940 0.5  780.2 9056 0.9 

 

Based on the numbers in the table, the types of illness diagnosed indicate very little difference in 
frequency after the top 10 codes. For the visitors data, we included the code for the flu related 
symptoms which rank 24th on the list as well as some prominent ILI type symptoms. A complete 
list of these codes for up to 5 diagnostic codes will be provided in our final report. 
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Identifying Cases from Chief Complaints 
This preliminary analysis is critical to the early detection of any cases beyond the norm. Often, a 
patient may present to the emergency room with full knowledge of their condition, but cases 
related to flu may not be so clear. When considering ILI conditions, a number of symptoms may 
contribute to an ultimate detection of a case. However, some cases may be vaguer. Cough, for 
example, is a vague symptom taken by itself because the condition may be caused by other, 
sometimes similar respiratory illnesses such a bronchitis or allergies. However, based on most of 
the literature, the combination of cough and other symptoms, especially fever, can be a good 
indication of flu. To ascertain the chief complaints that could more reliably be considered a chief 
complaint of flu, we first had to isolate specific terms in the chief complaint. Based on previous 
literature reviews, we selected those terms that were most likely to be used in describing 
symptoms of flu. The most obvious were those cases in which the chief complaint was flu or 
influenza. Next, we compiled cases using specific symptoms in some string of the data. Those 
symptoms included the following: 

 COUGH 
 COLD 
 FEVER 
 RUNNY NOSE 

 WEAKNESS 
 BODY ACHES 
 SORE THROAT 
 HEADACHE 

Those codes cases were then recalculated into a binomial using 1 for the presence of the 
symptom and 0 if the symptom was not present. Based on those findings, we then merged data 
by using the following combinations (examples are shown based on the merged data sets from 
UMC and Valley Hospital where 1 = the presence of two or more symptoms and 0 = no ILI 
symptoms: 

FLU 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1225522 99.7 99.7 99.7 

1.00 4055 .3 .3 100.0 

2.00 2 .0 .0 100.0 

Total 1229579 100.0 100.0  
 

FEVER 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1184095 96.3 96.3 96.3 

1.00 45484 3.7 3.7 100.0 

Total 1229579 100.0 100.0  
 

RUN_NOSE 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1227436 99.8 99.8 99.8 

1.00 2143 .2 .2 100.0 

Total 1229579 100.0 100.0  
 

BODY_ACHE 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1228192 99.9 99.9 99.9 

1.00 1387 .1 .1 100.0 

Total 1229579 100.0 100.0  
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SORE_THT 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1219788 99.2 99.2 99.2 

1.00 9791 .8 .8 100.0 

Total 1229579 100.0 100.0  
 

COUGH 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1202635 97.8 97.8 97.8 

1.00 26944 2.2 2.2 100.0 

Total 1229579 100.0 100.0  
 

STUFFY_NS 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1229408 100.0 100.0 100.0 

1.00 171 .0 .0 100.0 

Total 1229579 100.0 100.0  
 

VOMITTING 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1228176 99.9 99.9 99.9 

1.00 1403 .1 .1 100.0 

Total 1229579 100.0 100.0  
 Any 

data in the table above indicates that of 1,229, 579 cases examined, more than 91,000 hospital 
visits included at least one of the symptoms for ILI.  Any cases resulting in a score of 2 or more 
could be considered the combination necessary for determining flu. The result was 2,319 cases 
for the two hospital systems. That data was then merged with those cases that were classified as 
flu or influenza:  

FEV_STUFFY 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1229569 100.0 100.0 100.0 

1.00 10 .0 .0 100.0 

Total 1229579 100.0 100.0  
 

FEV_RUNNY 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1229399 100.0 100.0 100.0 

1.00 180 .0 .0 100.0 

Total 1229579 100.0 100.0  
 

FEV_COUGH 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1226649 99.8 99.8 99.8 

1.00 2930 .2 .2 100.0 

Total 1229579 100.0 100.0  
 

COUGH_THRT 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1229102 100.0 100.0 100.0 

1.00 477 .0 .0 100.0 

Total 1229579 100.0 100.0  
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FEV_THROAT 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1228953 99.9 99.9 99.9 

1.00 626 .1 .1 100.0 

Total 1229579 100.0 100.0  
 

COUGH_STUFFY 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1229559 100.0 100.0 100.0 

1.00 20 .0 .0 100.0 

Total 1229579 100.0 100.0  
 

COUGH_RUNNY 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1229197 100.0 100.0 100.0 

1.00 382 .0 .0 100.0 

Total 1229579 100.0 100.0  
 

COUGH_ACHES 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1229504 100.0 100.0 100.0 

1.00 75 .0 .0 100.0 

Total 1229579 100.0 100.0  
 

FEV_ACHES 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1229438 100.0 100.0 100.0 

1.00 141 .0 .0 100.0 

Total 1229579 100.0 100.0  
 

THROAT_ACHES 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1229518 100.0 100.0 100.0 

1.00 61 .0 .0 100.0 

Total 1229579 100.0 100.0  
 

When combined with the flu and influenza variables, the total number of cases is approximately 
2,300 cases.  In the table below, the variable ILI_COMBO represents the number of ILI related 
cases through the merging of those variables with at least two symptoms of flu. The data 
indicates that 4,649 cases can be realistically classified as ILI.  

ILI_COMBO 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1224930 99.6 99.6 99.6 

1.00 4649 .4 .4 100.0 

Total 1229579 100.0 100.0  
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By combining the ILI designated illness with the flu, and sore throat admissions the following 
results are concluded: 

 

THE_FLU 

 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid .00 1212224 98.6 98.6 98.6 

1.00 17355 1.4 1.4 100.0 

Total 1229579 100.0 100.0  

 

The following table shows a preliminary assessment of the cases classified as influenza for both 
visitors and local residents. 

 

THE_FLU * local for Locals and Visitors 

 local 

Total 0 1 

THE_FLU    Local Count 178864 1033360 1212224 

% within THE_FLU 14.8% 85.2% 100.0% 

Visitors Count 2011 15344 17355 

% within THE_FLU 11.6% 88.4% 100.0% 

Total Count 180875 1048704 1229579 

% within THE_FLU 14.7% 85.3% 100.0% 

 

Flu Trends 2006-2010 

In the two line graphs below, the trends for the outbreak of flu are illustrated. The first graph 
describes the frequency of flu tracking the outbreak between visitors and local residents. The 
next graph illustrates the trends for visitors based to provide a better relationship with the local 
resident trends. The graphs illustrate the changing basis of flu on an annual basis. In most years, 
outbreak among visitors peaked before the outbreak among local residents. However, during 
certain years, outbreaks among visitors seem to show a more erratic trend. This may be due to 
the time of year when certain outbreaks happen in different parts of the country. Further 
assessment of this data is warranted.  
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Limitations of the Data 
There can be several important limitations to the data collected thus far. First, the data sets are 
large and many records require additional data cleansing to format data file mergers into a more 
reliable file. Because of the size of the data files, it is much more difficult to create accurate 
coding techniques to adequately capture chief complaints that might be indicated such as “flu”. 
For example, on examining all records related to “flu”, about 15% of the cases had to be omitted 
because of the inclusion of “fluid” or “flutter” in the chief complaint. Moreover, some terms 
such as “I feel terrible” might ultimately be coded as flu, but these are not captured in recoding 
string data into nominal data elements. 

Second, any system based on hospital or clinic data has inherent delays based on the medical 
seeking behavior of the infected individual. In addition to the incubation period of the disease, 
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there are delays in the seeking of medical care. The first step in a person’s illness usually 
involves self-care and possibly over the counter (OTC) medications. This step may last from 
several hours to several days, and in many cases, is the only step involved in the infected 
person’s medical care. 

Third, if a person does decide to seek medical care, there are delays in transportation to the 
medical clinic and delays in the admissions process. These delays are usually not significant in 
the overall course of the illness, but are relevant to the frequency of data transmission and 
analysis. If data provided need to first be coded by hospital staff (such as an ICD9-CM diagnosis 
code), there are additional delays of hours to days. 

Fourth, reliability of data - Some of the challenges to achieving real-time data surveillance when 
gathering information from EDs are that symptoms and CC are often recorded free-hand and 
there are no standardized terms so aggregating the data can become difficult. This is consistent 
with previous research regarding surveillance issues (Travers et. al, 2006). We also found that 
some information may take days or weeks to be transmitted due to not updating the patient 
record or deciding ICD-9 codes. Final diagnosis may depend on the reimbursement rates or how 
well the illness was charted. Although ICD-9 codes are standardized, the process of assigning 
patients ICD-9 codes involves multiple people and can take longer than desirable (Travers et. al, 
2006). 

Much more work remains to be done on this study. The project team will delve further into the 
chief complaint data to make sure that we are able to identify more cases of flu or ILI that may 
be lost to data manipulation ore missing data fields. In addition, the team hopes to add additional 
missing data from the hospitals to make a more accurate time line calculation.  

2.4.2 Travel and Disease Transmission 
Based on the time frame of the sample provider data the simulator was staged with data 
representing resident, pass-through, and visitor travel for calendar years 2005-2010.  An 
overview of the resident and visitor population change is provided in Exhibit 1.  
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 2005 2006 2007 2008 2009 2010 
Annual population change % 3.90% 5.30% 4.40% -0.50% 1.00% 1.50% 
Annual population trend 68,675 96,954 83,888 -10,396 20,201 30,011 
Avg. new residents per month 5,723 8,080 6,991 -866 1,683 2,501 

Sources:  GLS Research, U.S. Census Bureau,  Nevada State Demographer, Clark County Comprehensive Planning, 
Las Vegas Convention and Visitors Authority. 

Exhibit 1, Las Vegas Resident and Visitor Population 2005-2010 

 

Demographic Overview 
The predictive ILM simulates infectious disease status for individuals departing Las Vegas, and 
processes their travel route, mode of transportation, and destination.   This data predicts the 
routes and paths of spread based on ground and air transportation bandwidth, demographics, 
traffic and airline data.  Las Vegas receives almost 40 million visitors per year.    That equates to 
approximately 100,000 visitors arriving and departing per day.   GLS Research claims an 
average stay of approximately 3.5 days meaning there are typically about 300,000-350,000 
visitors in Las Vegas at any given point. 

The simulator produces visitor infection status and their mode, route, and time of departure.   
The output data allows analysis of the cities receiving exposed travelers including when they 
returned home.  Exhibit 2 shows the top 32 cities receiving exposed from an outbreak simulation 
in Las Vegas based on the seasonal flu outbreak of 2008-2009  
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Exhibit 2, Top Destination for Exposed Individuals Departing Las Vegas by Air 2008-2009 

 
Differences between the transportation total bandwidth and the visitors departing exposed are 
created by a stochastic simulation of interaction and effective contacts resulting in transmission, 
and the visitor’s infection status and expected duration of infectivity.  This allows modeling of 
heterogeneity for contacts, infectivity, and susceptibility.  Based on this ILM approach and the 
stochastic infection simulation a list of cities receiving the most exposed visitors will not 
necessarily match a list of cities receiving the most passengers.  Exhibit 3, Summary of Top 50 
Cities Receiving Simulated Infectious from Las Vegas by Air 2008-2009 Flu Season, shows a 
difference in top cities from Exhibit 2 which shows the top 32 cities receiving exposed from an 
outbreak simulation in Las Vegas based on the seasonal flu outbreak of 2008-2009. 
 

 Exposed Infectious Total 
Los Angeles California 9654 56283 65937 
Phoenix Arizona 8088 47247 55335 
San Francisco California 7773 44909 52682 
Denver Colorado 7244 42942 50186 
Chicago Illinois 7487 42037 49524 
Salt Lake City Utah 5375 31755 37130 
San Diego California 5436 31562 36998 
Dallas-Fort Worth Texas 5084 30662 35746 
Atlanta Georgia 5116 30039 35155 
New York New York 4899 28656 33555 
Burbank California 4855 27984 32839 
Seattle Washington 4840 27333 32173 
Houston Texas 4384 26285 30669 
Santa Ana California 3746 22200 25946 
Reno Nevada 3634 21020 24654 
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San Jose California 3416 20482 23898 
Minneapolis Minnesota 3035 20123 23158 
Sacramento California 3315 19134 22449 
Oakland California 3261 17821 21082 
Ontario California 2756 15674 18430 
Portland Oregon 2793 15481 18274 
Philadelphia Pennsylvania 2589 15113 17702 
Detroit Michigan 2799 14573 17372 
Newark New Jersey 2363 13904 16267 
Albuquerque New Mexico 2090 11634 13724 
Charlotte North Carolina 1899 11591 13490 
Vancouver British Colombia 1846 11410 13256 
Toronto Ontario 1920 10939 12859 
Tucson Arizona 1714 9556 11270 
Washington District of Columbia 1585 9441 11026 
Calgary Alberta 1529 8823 10352 
Cleveland Ohio 1518 8625 10143 
St Louis Missouri 1501 8585 10086 
Kansas City Missouri 1539 8450 9989 
Pittsburgh Pennsylvania 1430 8303 9733 
Honolulu Hawaii 1401 8119 9520 
Baltimore Maryland 1374 8026 9400 
San Antonio Texas 1298 7696 8994 
Indianapolis Indiana 1259 7258 8517 
London West Sussex 1317 6763 8080 
Edmonton Alberta 1127 6580 7707 
Boston Massachusetts 1100 6589 7689 
Milwaukee Wisconsin 1123 6328 7451 
Austin Texas 988 5844 6832 
Nashville Tennessee 959 5856 6815 
El Paso Texas 951 5830 6781 
Miami Florida 970 5664 6634 
Columbus Ohio 964 5186 6150 
Orlando Florida 946 5176 6122 
Tampa Florida 943 4936 5879 

Exhibit 3, Summary of Top 50 Cities Receiving Simulated Infectious 
from Las Vegas by Air 2008-2009 Flu Season 

 

While the top cities receiving exposed returning Las Vegas visitors can be expected to receive 
thousands of exposed, many cities also receive exposed individuals.  Exhibit 4, Cities Receiving 
less than 1,000 Exposed 2008-2009 Simulation lists some international and CONUS cities 
receiving exposed. 
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  Exposed Infectious Total 
0809IMID Incheon City Joong-Gu 142 750 892 
0809IMID Frankfurt Frankfurt Main 167 613 780 
0809IMID Santa Barbara California 192 568 760 
0809IMID Winnipeg Manitoba 123 612 735 
0809IMID Victoria British Colombia 153 542 695 
0809IMID Manchester Manchester 178 515 693 
0809IMID Regina Saskatchewan 88 269 357 
0809IMID Los Cabos San Jose del Cabo 103 234 337 
0809IMID Saskatoon Saskatchewan 90 229 319 
0809IMID Peoria Illinois 118 156 274 
0809IMID Kelowna British Colombia 43 221 264 
0809IMID Colorado Springs Colorado 109 145 254 
0809IMID Cedar Rapids Iowa 102 136 238 
0809IMID Fort Collins/Loveland Colorado 85 152 237 
0809IMID Springfield Missouri 87 144 231 
0809IMID Mc Allen Texas 85 141 226 
0809IMID Des Moines Iowa 88 135 223 
0809IMID Wichita Kansas 81 138 219 
0809IMID Stockton California 76 115 191 
0809IMID Missoula Montana 70 111 181 
0809IMID Santa Maria California 61 104 165 
0809IMID Sioux Falls South Dakota 56 106 162 
0809IMID Anchorage Alaska 27 103 130 
0809IMID Shreveport Louisiana 55 68 123 
0809IMID Great Falls Montana 58 62 120 
0809IMID Medford Oregon 55 63 118 
0809IMID Rochester Minnesota 52 66 118 
0809IMID Rapid City South Dakota 53 62 115 
0809IMID Redmond Oregon 44 68 112 
0809IMID Grand Junction Colorado 39 70 109 
0809IMID Hermosillo Sonora 33 75 108 
0809IMID Idaho Falls Idaho 45 63 108 
0809IMID Laredo Texas 50 57 107 
0809IMID Belleville Illinois 46 57 103 
0809IMID Fargo North Dakota 47 56 103 
0809IMID Chicago/Rockford Illinois 48 54 102 
0809IMID Pasco Washington 50 52 102 
0809IMID Lincoln Nebraska 51 47 98 
0809IMID Green Bay Wisconsin 41 55 96 
0809IMID Bismarck North Dakota 35 59 94 
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0809IMID Duluth Minnesota 35 56 91 
0809IMID South Bend Indiana 35 50 85 
0809IMID Eugene Oregon 36 44 80 
0809IMID Billings Montana 40 32 72 

Exhibit 4, Cities Receiving less than 1,000 Exposed 2008-2009 Simulation 

 
Simulation air versus road visitors and the main paths of egress are compared in Exhibit 5, 
Exposed Road Traveler Routes 2005-2006 Simulation and Exhibit 6, Exposed Air Traveler 
Destinations 2005-2006 Simulation.  According to GLS Research annual demographic reports 
approximately 54 % of visitors travel by ground transportation and 46% by air. 
 

 
Exhibit 5, Exposed Road Traveler Routes 2005-2006 Simulation  

 

 
Exhibit 6, Exposed Air Traveler Destinations 2005-2006 Simulation 
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Effects within the Sample 
Day of the week and holiday effects are present in the sample.  Burkom’s (2006) Monday spike 
is visible as are additional noise components.  Exhibits 7 and 8 summarize the DOW and 
Holiday effects on case reports classified ILI by the study.   
 
 

 
 

Exhibit 7, Day of Week Effects within the Sample 
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Exhibit 8, Holiday Effects within the Sample by Year 

 

 
Exhibit 9, Holiday Effects within the Sample 2007-mid2010 
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3.0 Key Research Accomplishments  
Completed investigative meetings with hospitals, clinics, physician practices, paramedics, 
Nevada Department of Transportation, airport, and hospitality industry representatives 

Updated surface travel database and added second half 2008 and all 2009 and 2010 
information 

Updated air travel database for system test adding 2009 and 2010 data 

Updated simulator ILI files using CDC sentinel data for 2008, 2009, and 2010 

Prepared and maintained message server, provider (UMC) ED data interface, and database 

Continued requirements analysis and updated system functional requirements 

Conducted and documented a literature review of related research and publications 

Conducted an empirical study of Las Vegas Strip employment including non-resort business, 
convention attendance, and interaction between residents and visitors to improve understanding 
of contact rates 

All staff completed two CITI training courses for research protection 

Updated and submitted protocol to UNLV IRB for approval to access and use provider ED data 

Received UNLV IRB protocol approval 

Submitted UNLV IRB approved protocol to Office of Research Protection for approval to 
access and use provider ED data 

Received ORP decision of Non-Human Use data 

Completed ED data normalization, anomaly removal, binning of syndromes, and preliminary 
data analyses in preparation for test  

Evaluated some available, existing biosurveillance codes for suitability including SYDOVAT, 
Trisano, Real-time Outbreak Detection System, EpiFire, Global Epidemic Model and Global 
Influenza Surveillance Network 

Ported and tested synthetic data generation codes using R to prepare synthetic test data sets 
with appropriate distributions and effects  

Ported MATLAB MCUSUM and MEWMA codes to Octave 

Developed EWMA and CUSUM detection codes 

Developed software code for state-space disease model with mobility between cities and 
models for SECIR adding carrier-latency and SEInR including variable infectivity 

Modified software codes for simulation of air and road travel to improve performance. 
Converted single-computer designed codes to run on the Hadoop cluster for performance 
improvement and developed some of the new modules required to run biostage codes on the 
cluster   

Updated the Hadoop cluster hardware to reduce travel simulation time 
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4.0 Reportable Outcomes 
Received Non-Human Use ruling from Office of Research Protection 

Established interface with the County hospital system and obtained and stored year of ED data 

Obtained ED data from University Medical Center, Sunrise hospital, and three Valley Health 
Systems hospitals 

Completed prototype software for modeling population mobility and correlation of travel and 
outbreak information sets 

Prepared test software codes for outbreak detection and conducted initial validation testing 

Completed prototype software for modeling population mobility and simulating outbreaks  
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5.0 Conclusions 
Meaningful integration of travel and infectious disease propagation information is highly 
applicable to effective epidemiology. The development and integration of surveillance with 
population dynamics, especially travel, should be considered essential function for effective 
epidemiology in the computer age. 

Data shaping costs along with legitimate privacy concerns and the lack of mandated standards of 
reporting and recordkeeping result in surveillance-functions receiving a very poor signal in a 
very noisy environment.  The main factors limiting progress are legislative, but technical 
advancements are also needed.   

Individual-level models (ILM) enable modeling of heterogeneity and statistical distance not 
possible in meta-population infection spread models.  Advancements in data processing 
technology enable and therefore mandate development of improved data processing methods and 
new infection models.  The resource requirements for ILM modeling are no longer a constraint 
but efficient, validated methods for data integration and shaping are a required, complementary 
component. 

Regional human daily population variance is a significant noise component within syndromic 
time series.  This effect has potential within the research domain for filtering or providing 
explanation and within the surveillance function to expand situational awareness capacity. 

Research in these areas is essential and should continue. 

The results of this study have not been validated.  Tests were ongoing in parallel with the 
development of this report.  Data access was delayed much longer than scheduled awaiting an 
ORP review.  This compressed the schedule.  The ORP review determined the sample was non-
human-use.  

This report was concluded based on the expiration of resources for the level-of-effort. 

 
  



 41 

6.0 References 
Anoli, Luigi; Duncan, Starkey Jr.; et al. The Hidden Structure of Interaction. IOS press. 

Amsterdam, Berlin, Oxford, Tokyo, Washington, D. C. 2005. 

Armbruster, Benjamin and Bandeau, Margaret L. “Contact tracing to control infectious disease: 
when enough is enough”. Health Care Management Science 10 (October 2007): 341-355.  
Available online: <http://www.stanford.edu/dept/MSandE/cgi-
bin/people/faculty/brandeau/pdfs/Armbruster%20HCMS%20article.pdf>. 

Atkinson, Michael P. and Wein, Lawrence M. “Quantifying the Routes of Transmission for 
Pandemic Influenza”. Bulletin of Mathematical Biology 70 (2008): 820-867. 

Barker J, Vipond IB, Bloomfield SF. “Effects of cleaning and disinfection in reducing the spread 
of norovirus contamination via environmental surfaces”. J Hosp Infect. 2004; 58:42–9. 

Biosurveillance Data Steering Group (BDSG). Minimum Data Set. Available online: 
<http://www.docstoc.com>. 

Boëlle PY, Bernillon P, Desenclos JC. “A preliminary estimation of the reproduction ratio for 
new influenza A (H1N1) from the outbreak in Mexico, March-April 2009”. Euro Surveill. 
2009;14(19):pii=19205. Available online: 
<http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19205>. 

Bravata, D., McDonald, K., et al (2004) “Systematic Review: Surveillance Systems for Early 
Detection of Bioterrorism-Related Diseases”. Ann Internal Medicine 140.910-922. 
American College of Physicians. 

Brooks, Jennifer. Air Transport Association, “Control of Communicable Diseases (Q Rule). Air 
Transport Association. 

Brownstein, J.S., C.J. Wolfe, and K.D. Mandl (2006). “Empirical evidence for the effect of 
airline travel on inter-regional influenza spread in the United States”. PLOS Medicine; 
3(10): Accessed July 26, 2008.from <http://medicine.plosjournals.org/perlserv/>.  

Burkom, H.S. and Shmueli, Galit. "Statistical Challenges Facing Early Outbreak ... Surveillance 
Conference (in Advances in Disease Surveillance, 1:53), 2006. 

Busenberg, Stavros and van den Driessche, P. “Nonexistence of Periodic Solutions for a Class of 
Epiedemological Models.” Available at: 
dspace.library.uvic.ca:8080/bitstream/handle/.../DMS%20539.pdf?... 

http://www.stanford.edu/dept/MSandE/cgi-bin/people/faculty/brandeau/pdfs/Armbruster%20HCMS%20article.pdf
http://www.stanford.edu/dept/MSandE/cgi-bin/people/faculty/brandeau/pdfs/Armbruster%20HCMS%20article.pdf
http://www.docstoc.com/
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19205
http://medicine.plosjournals.org/perlserv/


 42 

Cambridge Systematics, Inc. (2010), “Travel Model Validation and Reasonableness Checking 
Manual”. Available online: 
<http://tmip.fhwa.dot.gov/resources/clearinghouse/docs/FHWA-HEP-10-042/FHWA-HEP-
10-042.pdf>. 

Cameron, Wendy K. “Public Health Planning for Vulnerable Populations and Pandemic 
Influenza”. Master’s Thesis. Naval Postgraduate School. Monterey, Ca. 2008. 

Camitz, Martin. “Computer Aided Infectious Disease Epidemiology – Bridging to Public 
Health”. Karolinska Institutet. Stockholm, 2010. Available online: 
<http://publications.ki.se/jspui/bitstream/10616/40323/1/Thesis%20Camitz>. 

Carley, K., Fidsma, D., et al. (2004) “BioWar: Scalable Multi-Agent Social and Epidemiological 
Simulation of Bioterrorism Events”. Electronic Publication, Pittsburgh, PA, IEEE 
SMCA03-11-0274. Centers for Disease Control and Prevention: Seasonal Influenza (Flu). 
Flu Activity and Surveillance. Accessed June 25, 2008 from: 
<http://www.cdc.gov/flu/weekly/fluactivity.htm.>.  

Cassa, A. Christopher “Spatial Outbreak Detection Analysis Tool: A system to create sets of 
semi-synthetic geo-spatial clusters.” (August 30, 2004) Available online: 
<http://groups.csail.mit.edu/medg/ftp/cassa/meng.pdf>. 

Ceccine, Gary & Moore Melinda. “Infectious Disease and National Security; Strategic 
Information Needs”. Rand National Defense Research Institute, 2006. Accessed April 18, 
2011 from: <http: //www.rand.org>. 

Centers for Disease Control and Prevention: “Seasonal Flu. Flu symptoms and activity”. 
Accessed April 18, 2008 from: <http://www.cdc.gov/flu/weekly/fluactivity.htm>.   

Centers for Disease Control and Prevention (2009). “H1N1 Flu”. Accessed November 12 2008 
from <http://www.cdc.gov/h1n1flu/qa.htm>. 

Chang, Hwa-Gan PhD, Jian-Hua Chen MD, et al. “The Availability of Data Elements in an 
Existing Emergency Department Electronic Medical Record System”. New York State 
Department of Health, Albany, NY and Emergency Medical Associates of New Jersey 
Research Foundation, New Jersey 

Chowell, Gerardo; Hyman, James M.; and Bettencourt, Luis M.A. “Mathematical and Statistical 
Estimation Approaches in Epidemiology” Dordrecht Heidelberg London New York: Springer, 
2009.  Available online: 
<http://books.google.com/books?id=DYSLbyq_hYgC&pg=PA124&dq=Contact+rate+infectious
+disease&hl=en&ei=Szv6TftaxPDSAevDkL0D&sa=X&oi=book_result&ct=result&resnum=3&
ved=0CDkQ6AEwAjge#v=onepage&q=Contact%20rate%20infectious%20disease&f=false>. 

http://tmip.fhwa.dot.gov/resources/clearinghouse/docs/FHWA-HEP-10-042/FHWA-HEP-10-042.pdf
http://tmip.fhwa.dot.gov/resources/clearinghouse/docs/FHWA-HEP-10-042/FHWA-HEP-10-042.pdf
http://publications.ki.se/jspui/bitstream/10616/40323/1/Thesis%20Camitz
http://www.cdc.gov/flu/weekly/fluactivity.htm
http://groups.csail.mit.edu/medg/ftp/cassa/meng.pdf
http://www.cdc.gov/flu/weekly/fluactivity.htm
http://www.cdc.gov/h1n1flu/qa.htm
http://books.google.com/books?id=DYSLbyq_hYgC&pg=PA124&dq=Contact+rate+infectious+disease&hl=en&ei=Szv6TftaxPDSAevDkL0D&sa=X&oi=book_result&ct=result&resnum=3&ved=0CDkQ6AEwAjge#v=onepage&q=Contact%20rate%20infectious%20disease&f=false
http://books.google.com/books?id=DYSLbyq_hYgC&pg=PA124&dq=Contact+rate+infectious+disease&hl=en&ei=Szv6TftaxPDSAevDkL0D&sa=X&oi=book_result&ct=result&resnum=3&ved=0CDkQ6AEwAjge#v=onepage&q=Contact%20rate%20infectious%20disease&f=false
http://books.google.com/books?id=DYSLbyq_hYgC&pg=PA124&dq=Contact+rate+infectious+disease&hl=en&ei=Szv6TftaxPDSAevDkL0D&sa=X&oi=book_result&ct=result&resnum=3&ved=0CDkQ6AEwAjge#v=onepage&q=Contact%20rate%20infectious%20disease&f=false


 43 

Conway, Mike; Dowling, John; and Chapman, Wendy. “Developing a Biosurveillance Application 
Ontology for Influenza- Like- Illness.” Proceedings of the 6th Workshop on Ontologies and 
Lexical Resources (Ontolex 2010), pp. 58–66. Beijing, August 2010  

Cooper B, Pitman R, Edmunds W, & Gay N. (2006) Delaying the International Spread of 
Pandemic Influenza: PLoS Medicine vol. 3 no. 6:e212 pp. 845-0854. 

Cooper, D.L.; Verlander, N. Q.; Elliot, A. J.;  Joseph, C. A.; and Smith, G. E. “Can syndromic  
thresholds provide early warning of national influenza outbreaks?” Journal of Public 
Health, Volume 31, Issue 1, pp17-25. Available online: 
<http://jpubhealth.oxfordjournals.org/content/31/1/17.full>. 
 

Cowgill, K., Lucas, C., Benson, R., et al. (2005). “Recurrence of legionnaire’s disease at a hotel 
in the United States Virgin Islands over a 20-year period”. Clinical Infectious Disease. 
2005:40 pp. 1205-1207. 

Cowling, Benjamin J.; Wong, Irene O. et al “Methods for monitoring influenza surveillance 
data”. Oxford Journals International Journal of Epidemiology. 35 (July 2006) 1314-1321. 
Available online: <http://ije.oxfordjournals.org/content/35/5/1314.full>. 

Crepey, P. and M. Barthelemy (2007). “Detecting robust patterns in the spread of epidemics: a 
case study of influenza in the United States and France”. American Journal of 
Epidemiology, 166(11): 1244-51. 

“Data Sources: County Data – US Census Bureau American Community Survey”. Available 
online: <http://factfinder.census.gov/home/saff/main.html?_lang=en&_ts=>. 

Delaney, John B., Jr.  “The National Disaster Medical Systems Reliance on Civilian-Based 
Medical Response Teams in a Pandemic is Unsound”. Master’s Thesis.  Naval 
Postgraduate School. Monterey Ca. 2007. 

Department of the Army. Army Profile FY05. Retrieved November 14, 2009 from 
<http://www.armyg1.army.mil/hr/docs/demographics/FY05%20Army%20Profile.pdf>.  

Diekmann, O. “Mathematical Epidemiology of Infectious Disease”. Images of SMC Research. 
1996. 

Dippold, L., Lee, R., Selman, C., Monroe, S., & Henry, C. (2003). “A gastroenteritis outbreak 
due to norovirus associated with a Colorado hotel”. Journal of Environmental Health. 
66(5): 13-7.  

Elveback, Lila R. “Simulation of Stochastic Discrete-Time Epidemic Models for Two Agents.” 
Advances in Applied Probability Vol 3, Number 2 (Autumn 1971): pp 226-228. 

http://ije.oxfordjournals.org/content/35/5/1314.full
http://factfinder.census.gov/home/saff/main.html?_lang=en&_ts
http://www.armyg1.army.mil/hr/docs/demographics/FY05%20Army%20Profile.pdf


 44 

Epstein, J.M. D.M. Goedecke, Yu, et al, (2007). “Controlling pandemic flu: the value of 
international air travel restrictions”. PLoS One, 5(e141). Accessed July 25, 2008 from: 
<www.plosne.org>. 

Flahault, A.; Vergue, E. et al (2009). “Potential for a global dynamic of Influenza A (H1N1)”. 
BMC Infectious Diseases: 9:129. 

Foley, John R. “The Pandemic Pendulum: A Critical Analysis of Federal and State Preparedness 
for a Pandemic Even”. Masters thesis. Naval Postgraduate School. Monterey, Ca. 2009. 

Fraser, Christopher; Riley, Steven; et al. “Factors that make an Infectious Disease Outbreak 
Controllable”. Proceedings of the National Academy of Sciences of the United States of 
America 101 (16) (April 2004) 6146-6151. Available online: 
<www.ncbi.nlm.nih.gov/pmc/articles/PMC395937/>.  

Fricker, Ronald D., Jr. “Some Methodological Issues in Biosurveillance”. Naval Postgraduate 
School Monterey, CA. 2009 

Grais, R.F, J.H. Ellis, A. Kress, G.E. Glass (2004). “Modeling the spread of annual influenza 
epidemics in the U.S.: the potential role of air travel”. Health Care Management Science, 
7(2): 127-34. 

Haber, Michael J.; Shay, David K.; et al. “Effectiveness of Interventions to Reduce Contact 
Rates during a Simulated Influenza Epidemic”. Emerging Infectious Diseases (Volume 13, 
No.4) April 2007. Available online: <http://www.cdc.gov/EID/content/13/4/pdfs/581.pdf>.  

Hannon, Bruce and Matthias, Ruth. Modeling Dynamic Biological Systems. New York: Springer-
Verlag 1999. Available online: 
<http://books.google.com/books?id=CCkNkjnE2DUC&pg=PA131&dq=Contact+rate+infe
ctious+disease&hl=en&ei=XA_xTcj2PPSr0AHHluWlBA&sa=X&oi=book_result&ct=res
ult&resnum=3&ved=0CD0Q6AEwAjgK#v=onepage&q=Contact%20rate%20infectious%
20disease&f=false>. 

Henderson, J. (2004). “Paradigm shifts: National tourism organizations and education and 
healthcare tourism. The case of Singapore”. Tourism and Hospitality Research 5(2), 170-
180. Retrieved November 14, 2009 from ABI/INFORM Global. (Document ID: 
694775801). 

Hethcote, Herbert W. “The Basic Epidemiology Models: Models, Expressions for R0, Parameter 
Estimation, and Applications.” Mathematical Understanding of   Infectious Disease 
Dynamics. World Scientific Publishing Co. Pte. Ltd. Available online: 
<http://www.worldscibooks.com/mathematics/7020.html>.  

http://www.plosne.org/
http://www.cdc.gov/EID/content/13/4/pdfs/581.pdf
http://www.worldscibooks.com/mathematics/7020.html


 45 

Hu, Cecilia X and Knitt, Matthew C.  “ A Comparative Analysis of Multivariate Statistical Detection 
Method.” Naval Postgraduate School, Monterrey, CA, 2007. Available at: www.dtic.mil/cgi-
bin/GetTRDoc?AD=ADA470074 

Hufnagel L, Brockmann D, and Geisel T. (2004) “Forecast and control of epidemics in a 
globalized world”. PNAS, vol. 101 no. 42:15124-15129. 

Hyman, James M. and Li. Jai. “Differential Susceptibility and Infectivity Epidemic Models”. 
Mathematical Biosciences and Engineering, Volume 3, Number 1 (January 2006): 89-100. 
Available online: <http://www.mbejournal.org/>. 

Joner, M.D., Jr., Woodall, W.H., Reynolds, M.R. Jr., and R.D. Fricker, Jr. (2006). The Use of 
Multivariate Control Charts in Public Health Surveillance (draft). 

Kontzer, T. (2004). “Privacy pressure”. Information Week: 981; ABI/INFORM Global p. 22. 

Korotayev, A.; Malkov, A.; and Khaltourina, D. Introduction To Social Macrodynamics: Secular 
Circles and Millenial Trends. URSS, Moscow 2006 

Kulldorff M, Heffernan R, Hartman J, Assunção RM, Mostashari F. (2005). “Space-Time 
Permutation Model a space-time permutation scan statistic for the early detection of disease 
outbreaks”. PLoS Medicine, 2:216- 224.  

Longini, Ira M.; Halloran, M. Elizabeth, et al “Containing Pandemic Influenza with Antiviral 
Agents”. American Journal of Epidemiology 159 (April 1, 2004): 623-633. 

Lopez-Cervantes, M., Venado, A., Moreno, et al. (2009). “On the spread of the novel Influenza 
A (H1N1) virus in Mexico”. J Infect dev Ctries 2009; 3 (5): 327-330. 

Ma, Zhien and Li, Jia. Dynamical Modeling and Analysis of Epidemics. World Scientific 
Publishing. Hackensack, N.J. 2009. 

Maciejewski, Ross; Hafen, Ryan; et al. (May/June 2009). “Generating Synthetic Syndromic-
Surveillance Data for Evaluation Visual-Analytics Techniques”, IEEE Computer Society. 

Magnusson, Magnus S. “Understanding Social Interaction: Discovering Hidden Structure with 
Model and Algorithms.” The Hidden Structure of Interaction: From Neurons to Culuure 
Patterns. IOS Press, Amsterdam 2005 

Min, J. (2008). “Forecasting Japanese tourism demand in Taiwan using an intervention analysis”. 
International Journal of Culture, Tourism and Hospitality Research, 2(3), 197-216. 
Retrieved November 14, 2009 from ABI/INFORM Global. (Document ID: 1550254771). 



 46 

MMWR (2007). Retrieved November 13, 2009 from 
<http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5648a2.htm>. 

Moser, M.R., T. R. Bender, H. S. Margolis, G.R. Noble, A.P. Kendal, D.G. Ritter (1979). “An 
outbreak of influenza aboard a commercial airliner”. American Journal of Epidemiology, 
Vol. 110 (1): 1-6. 

Nelson, Kenrad E. and Williams Carolyn Masters. Infectious Disease Epidemiology. Sudbury 
MA: Jones and Bartlett Publishers, 2007. Available online: 
<http://books.google.com/books?id=o_j-
G4zJ4cQC&pg=PA198&lpg=PA198&dq=Contact+rate+infectious+disease&source=bl&ot
s=RFylSiYDxZ&sig=MfbdapJ2JS_7CeS-
OeYZ29bqYqU&hl=en&ei=n0juTYzQNYfJgQeh47GVDw&sa=X&oi=book_result&ct=re
sult&resnum=2&ved=0CCgQ6AEwATgK#v=onepage&q=Contact%20rate%20infectious
%20disease&f=false>.  

Okhmatovskaia, A., Chapman, W., Collier, N.,Espino, J., and Buckeridge, D. (2009). “SSO: The 
Syndromic Surveillance Ontology.”  Proceedings of the International Society for Disease 
Surveillance. 

Pelecanos, Anita M.; Ryan, Peter A.; Gatton, Michelle L. “Outbreak detection algorithms for 
seasonal disease data: a case study using ross river virus disease”. Available online: 
<http://www.biomedcentral.com/1472-6947/10/74>. 

Pine, R. & McKercher, B. (2004). “The impact of SARS on Hong Kong’s tourism industry”. 
International Journal of Contemporary Hospitality Management. Vol 16. Issues 2 139-143.  

Rashid, H. S. Shafi, R. Booy, H.E. Bashir, et al., (2008). Influenza and respiratory syncytial virus 
infections in British hajj pilgrims. Emerging Health Threats Journal, 1(e2). Accessed July 
25, 2008 from: <www.eht-journal.org>. 

Reed C, Angulo FJ, Swerdlow DL, et al. (2009). “Estimates of the prevalence of pandemic (H1N1) 
2009, United States, April–July 2009”. Emerg Infect Dis [serial on the Internet]. 2009 Dec. 
Retrieved November 14, 2009 from: <http://www.cdc.gov/eid/content/15/12/pdfs/09-
1413.pdf>. 

Ritzwoller, Debra P.; Kleinman, K.; et al. “Comparison of Syndromic Surveillance and a Sentinel 
Provider in Detecting an Influenza Outbreak --- Denver, Colorado, 2003.”MMWR Supplement 
54(suppl) (August 26, 2005): 151-156. Available online: 
<http://www.cdc.gov/Mmwr/preview/mmwrhtml/su5401a24.htm>. 

Roberts, Anthony. “The Emergence of Disease in Early World-Systems: a Theoretical Model of 
World-System and Pathogen Evolution”. Presentation at the annual meetings of the 

http://www.biomedcentral.com/1472-6947/10/74
http://www.eht-journal.org/
http://www.cdc.gov/eid/content/15/12/pdfs/09-1413.pdf
http://www.cdc.gov/eid/content/15/12/pdfs/09-1413.pdf
http://www.cdc.gov/Mmwr/preview/mmwrhtml/su5401a24.htm


 47 

American Sociological Association. Atlanta, Ga. August 2010. Available online: 
<http://irows.ucr.edu/papers/irows62/irows62.htm>.  

Joseph, C., Ricketts, K. (2007). “From development to success: the European surveillance 
scheme for travel associated Legionnaires' disease”. European Journal of Public Health, 
17(6), 652-6. Retrieved November 15, 2009 from ABI/INFORM Global. 

“Riviera Hotel & Casino Selects NFR Security to Protect Guest and Financial Data”. Business 
Wire. New York: Apr 5, 2004.  p. 1 

Rota MC, Caporali M, Massari M.,”European Guidelines for Control and Prevention of Travel 
Associated Legionnaires' Disease: the Italian experience”. Euro Surveill. 
2004;9(2):pii=445. Avalable online: 
<http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=445>. 

Rothman, Kenneth J.; Greenland, Sander; and Lash, Timothy L. Modern Epidemiology. 
Philadelphia: Lippincott Williams & Wilkins, 2008.  Available online: 
<http://books.google.com/books?id=Z3vjT9ALxHUC&printsec=frontcover&dq=inauthor:
%22Kenneth+J.+Rothman%22&hl=en&ei=mnb3TZH7CYT00gGywbDFCw&sa=X&oi=b
ook_result&ct=result&resnum=1&ved=0CDAQ6AEwAA#v=onepage&q&f=false>.  

Russell, C.A., T.C. Jones, I.G. Barr, et al. (2008). “The global circulation of seasonal influenza a 
(H2N2) viruses”. Science, 320; April 18, 2008: 340-46. 

Rvachev, Leonid A. and Longini, Ira M. “AMathematical Model For The Spread of Influenza.” 
Mathematical Biosciences (75) Issue 1 July 1985: pp.3-22. 

Sattenspiel, Lisa and Klaus Dietz (1995) “A structured epidemic model incorporating geographic 
mobility among regions”. Mathematical Biosciences 128:71-91. 

Scholer, M. (2004). “Development of a Syndrome Definition for Influenza-Like-Illness.”  
Proceedings of American Public Health Association Meeting (APHA 2004). 

Shmueli, Galit. "Wavelet-Based Monitoring in Modern Biosurveillance", Working Paper, RHS-
06-002, Robert H Smith School, University of Maryland (http://ssrn.com/abstract=902878). 

Smith, R. (2004). “Courts: FBI can’t force casinos to reveal records”. Retrieved on November 
20, 2009 from: <http://www.casinocitytimes.com/news/article/courts-fbi-cant-force-
casinos-to-reveal-records-145652>. 

Southern Nevada Health District (2007). “Guidelines for the prevention and control of norovirus 
in hotels/casinos”. Retrieved November 15 from: 
<http://southernnevadahealthdistrict.org/health-topics/norovirus.php>. 

http://irows.ucr.edu/papers/irows62/irows62.htm
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=445
http://books.google.com/books?id=Z3vjT9ALxHUC&printsec=frontcover&dq=inauthor:%22Kenneth+J.+Rothman%22&hl=en&ei=mnb3TZH7CYT00gGywbDFCw&sa=X&oi=book_result&ct=result&resnum=1&ved=0CDAQ6AEwAA#v=onepage&q&f=false
http://books.google.com/books?id=Z3vjT9ALxHUC&printsec=frontcover&dq=inauthor:%22Kenneth+J.+Rothman%22&hl=en&ei=mnb3TZH7CYT00gGywbDFCw&sa=X&oi=book_result&ct=result&resnum=1&ved=0CDAQ6AEwAA#v=onepage&q&f=false
http://books.google.com/books?id=Z3vjT9ALxHUC&printsec=frontcover&dq=inauthor:%22Kenneth+J.+Rothman%22&hl=en&ei=mnb3TZH7CYT00gGywbDFCw&sa=X&oi=book_result&ct=result&resnum=1&ved=0CDAQ6AEwAA#v=onepage&q&f=false
http://www.elsevier.com/locate/mathbio
http://www.casinocitytimes.com/news/article/courts-fbi-cant-force-casinos-to-reveal-records-145652
http://www.casinocitytimes.com/news/article/courts-fbi-cant-force-casinos-to-reveal-records-145652
http://southernnevadahealthdistrict.org/health-topics/norovirus.php


 48 

“Surveillance Group for New Influenza A (H1N1) Virus Investigation and Control in Spain. 
New influenza A (H1N1) virus infections in Spain, April-May 2009”. Euro Surveill. 
2009;14(19):pii=19209. Avalable online: 
<http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19209> 

Tourism Data: LVCVA – 2008 Las Vegas Visitor Profile Available online: 
<http://www.lvcva.com/getfile/2008%20Las%20Vegas%20Visitor%20Profile.pdf?fileID=
107)>. 

Travers, D., Barnett, C., Ising, A. & Waller, A. (2006). Timeliness of emergency department 
diagnosis for syndromic surveillance. AMIA 2006 Symposium Proceedings, 769-773. 

Vidal, R. & Lawson, A. (2006). “Online updating of space-time disease surveillance models via 
particle filters”. Stat Methods Med Res.; 15(5):423-44. 

Wagner, M., Moore, M. and Aryel, R. editors, (2006) Handbook of Biosurveillance, Elsevier 
Academic Press, Burlington, MA. 

Wallstrom, Garrick, L., Wagner, M., Hogan, W., “High-Fidelity Injection Detectability 
Experiments: a Tool for Evaluating Syndromic Surveillance Systems”. RODS Laboratory, 
University of Pittsburgh, Pittsburgh, Pennsylvania. Available online: 
<http://www.cdc.gov/Mmwr/preview/mmwhtml/su5401a15.htm>. 

Wenzel, R. P. (1996). “Airline travel and infection”. New England Journal of Medicine. 
334(15):981-2. 

World Health Organization (2009). Accessed November 5, 2009 from: 
<http://www.who.int/csr/don/2009_11_06/en/index.html>. 

  

http://www/
http://www.lvcva.com/getfile/2008%20Las%20Vegas%20Visitor%20Profile.pdf?fileID=107
http://www.lvcva.com/getfile/2008%20Las%20Vegas%20Visitor%20Profile.pdf?fileID=107
http://www.cdc.gov/Mmwr/preview/mmwhtml/su5401a15.htm


 49 

7.0 Project Personnel 
Nicholas A. CerJanic, MS, Principal Investigator 
QNA Director, Information Systems 
 
Chris Cochran, Ph.D. UNLV Principal Investigator 
Department of Health Care Administration and Policy 
 
Paulo Pinheiro, Ph.D., UNLV Co-Principal Investigator  
School of Community Health Sciences, Epi Program 
 
Henry J. Osterhoudt, PhD 
QNA Engineer/Historian 
Public Outreach Lead 
 
Geoffery Roberts, BA 
QNA Software Engineer 
 
John Goetz, MS 
Consultant  
 
Dominic Henriques, MHA  
Research Assistant, UNLV Department of Health Care Administration and Policy 
 
Ronald Ryan, MS 
QNA Systems Engineer 
 
Kelly Thomas, BS 
QNA Software Tester 
 
Shaun Galey, AAS 
QNA Software Engineer 
 
 
 
  



 50 

Appendix A: Letter Report from Colleagues 
 
Directly from formal email correspondence dated 17 May 2012: 
 
To: Nick CerJanic, Qinetiq-NA 
From: Chris Cochran, Ph.D., Paulo Pinheiro, PhD and Dominic Henriques 
Date: May 17, 2012 
Subject: Analysis of ILI Outbreak for October 1, 2008 – September 30, 2009 
 
In table 1, we show the number of cases of flu for September 28, 2008 through October 3, 
2009. These dates represent a 52-week period to reflect the period requested with each 
week beginning on a Sunday.  For comparison, we took a five year average of the number of 
cases to estimate outbreak starts. The trend for increases in the cases of ILI begins Dec. 28, 
2008 and peaks the week of March 2, 2009. There is another spike on April 26, 2009 which 
drops off suddenly. The researchers believe that this spike is an aberration due to reports 
of the H1N1 virus that hit the news wires precisely at this time. It is also worth noting that 
each hospital submitting data showed a dramatic two-day increase in the number of visits 
for ILI during that period. In our estimation, this aberration was caused by the “worried 
well”, since the cases drop off quickly and the first H1N1 cases were not reported in Nevada 
until later in the summer of 2009. However, there does appear to be another outbreak in 
late September 2009. The researchers believe that this outbreak is more closely related to 
the number of actual H1N1 cases during that year.  
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In the table 2  below we examine the percentage of flu cases for Oct. 1, 2008 – December 
31, 2009.  We also averaged the five year percentage of flu hospital visits for comparison 
purpose. We continued through the end of 2009 since there was another spike in cases at 
the end of September 2009 (see table 2).  We extended the one year examination period to 
more adequately assess the second ILI outbreak in late September 2009 to examine the 
duration of the outbreak.  The average 5-year patterns for cases of ILI shows a similar, 
though higher outbreak trend. The five year average number of weekly cases also 
illustrates the earlier than average second outbreak. The data also appears to confirm the 
aberration of the April 26, 2009 spike.  
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Appendix B: Hadoop Cluster Operation  
 

Startup/Shutdown 
Startup/shutdown 1.  Press the start-up button(s) on each machine in the cluster and allow  linux to 

complete in start up. 

NOTE: All machines must be running for Hadoop to work properly. Both 
MySQL and the file share into the sim directory should start automatically. 

2.  Log on 
Host: q000q 
Username: qq 
Password: qq 

NOTE: We assume here that you have set up an entry in the local hosts file.  If 
you’re  working from a Win7 machine the host file is located at 
C:\Windows\System32\drivers\etc\hosts  See hosts file below. 

3.  Start Hadoop  
qq@q000q:~$ ./start 

NOTE: Give Hadoop three - five minutes to fully start. 
4.  Stop Hadoop  

qq@q000q:~$ ./stop 
5.  Shutdown cluster 

qq@q000q:~$ ./shutdown  –h 

NOTE: From here you must press the start-up buttons to get the cluster going 
again. 

6.  Bounce cluster 
qq@q000q:~$ ./shutdown  –r 

NOTE: Bounce = restart. Stop and starts all machines. 
 

Administering Hadoop 
Administering 
Hadoop 

Hadoop has three web pages that are helpful to the administrator: 
1. Name node 
2. Map/Reduce Administration 
3. Task tracker Status 

Name Node  page is accessed using a web browser. 
Enter:  http://q000q:50070/dfshealth.jsp 
 

NOTE: From here you can browse  the hadoop file system and view the log files. 
Map/Reduce Administration page is accessed using a web browser. 
Enter:  http://q000q:50030/jobtracker.jsp 

NOTE: This is useful for monitoring the progress of map/reduce jobs. 
Task tracker Status page accessed using a web browser. 
Enter:  http://q000q:50060/tasktracker.jsp 

NOTE: I’ve never found this page to be useful. 

http://q000q:50070/dfshealth.jsp
http://q000q:50030/jobtracker.jsp
http://q000q:50060/tasktracker.jsp
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Running a job 
Running a job The script ./go is used to run a Hadoop job.  There are two versions of it (1) can be 

found in q000q:/home/qq/go and (2) the other can be found in q000q:/home/sim/go.   
q000q:/home/qq/go is more generic in that it can run any M/R (Map/Reduce) job 
that has been assembled into a jar file.   
 
qq@q000q:~$ ./go stage.jar -s 0506LMIDBASE -r run1 -y 56 –l 
 
stage.jar is the complete set of biomobility M/R jobs assembled into one jar.  It 
must reside in the /home/qq directory. 
 
-s specifies the name of the scenario to run.  This name must match a directory in 
/home/sim/biomobility.  The matching directory must contain a scenario.xmi file. 
 
-r specifies the name of the run. This name must match a directory in 
/home/sim/biomobility/<scenario name>  The matching directory must contain a 
conf.xmi file. 
 
-y specifies the two digit flu season code.  E.g. –y 56 = 2005-2006 flu season. 
 
-l Tells the job to copy the final files into a local directory. 
q000q:/home/sim/go is can only run the stage.jar file. 
 
qq@q000q:~$ ./go -s 0506LMIDBASE -r run1 -y 56 –l 

NOTE: stage.jar is not specified in this version of the command.  All other 
parameters remain the same as the above. 

flu season codes 56 = 2005-2006 flu season. 
67 = 2006-2007 flu season. 
78 = 2007-2008 flu season. 
89 = 2008-2009 flu season. 
910 = 2009-2010 flu season. 

 
Hosts file 

Hosts file Windows, Linux, Mac, and Unix all have what is known as a hosts file.  A hosts file 
contains entries that cross reference  
Windows 7 keeps its file at C:\Windows\System32\drivers\etc\hosts 
Linux keeps its hosts file at  /etc/hosts.  Changing the hosts file requires sudo 
privleges.  See sudo below.   
 
Making entries in the local (client machine’s) hosts file is a more convenient way to 
address machines in the cluster.    
 
Example of q000q:/etc/hosts  
fe00::0 ip6-localnet 
ff00::0 ip6-mcastprefix 
ff02::1 ip6-allnodes 
ff02::2 ip6-allrouters 
 
192.168.40.160 q000q 
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192.168.40.161 q001q 
192.168.40.162 q002q 
192.168.40.163 q003q 
192.168.40.164 q004q 
192.168.40.2   bioserver 
 
More on hosts. 
http://en.wikipedia.org/wiki/Hosts_%28file%29 

sudo The user qq can run sudo prefixed commands  the sim user cannot. 
 
Article on sudo: 
http://en.wikipedia.org/wiki/Sudo 

biomobility 
directory 

The directory /home/sim/biomobility is essential to the running of simulator jobs. If 
the –l flag is used final output files are copied out of hadoop into this directory. 
 
The basic structure is: 
/home/sim/biomobility/<scenario name>/<run name> 
 
The following files are require to be present. 
/home/sim/biomobility/<scenario name>/scenario.xmi 
/home/sim/biomobility/<scenario name>/<run name>/config.xmi 
 
The following files are output if the –l flag is used. 
/home/sim/biomobility/<scenario name>/<run name>/epistate.xmi 
/home/sim/biomobility/<scenario name>/<run name>/iostate.xmi 
 
 
qq@q000q:~$ ls /home/sim/biomobility 
05-06         0607IMIN      08-09         0910IMIDBASE 
0506AMID      0607LMAX      0809AMID      0910IMIN 
0506IMAX      0607LMID      0809IMAX      0910LMAX 
0506IMID      0607LMIDBASE  0809IMID      0910LMID 
0506IMIDBASE  0607LMIN      0809IMIDBASE  0910LMIDBASE 
0506IMIN      07-08         0809IMIN      0910LMIN 
0506LMAX      0708AMID      0809LMAX      56crmid 
0506LMID      0708IMAX      0809LMID      67 
0506LMIDBASE  0708IMID      0809LMIDBASE  78 
0506LMIN      0708IMIDBASE  0809LMIN      89 
06-07         0708IMIN      0910          baseline 
0607AMID      0708LMAX      09-10         EPI BASELINE SCENARIOS 
0607IMAX      0708LMID      0910AMID      resources 
0607IMID      0708LMIDBASE  0910IMAX 
0607IMIDBASE  0708LMIN      0910IMID 

/home/sim 
directory 

The directory /home/sim is mappable by a windows client. It contains the 
aforementioned biomobility directory. 

scenario.xmi  <?xml version="1.0" encoding="UTF-8"?> 
<scenario:Scenario xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" 
xmlns:scenario="qq.mr.scenario.xsd" begin="2005-10-09T00:00:00" end="2006-
04-01T00:00:00" stepSize="1440" stepBack="20160" stayHome="0.25" 
diseaseOfInterest="Influenza-E1-I-5-F.4" airportOfInterest="LAS" 
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averageStayDuration="5040" dataSource="all-2005-2006.data" title="56crmid"> 
  <outbreak> 
    <locale title="Boston" contactRate="0.56" population="609023"/> 
    <y0Primes/> 
  </outbreak> 
  <outbreak> 
    <locale title="Philadelphia" contactRate="0.56" population="1400000"/> 
    <y0Primes/> 
  </outbreak> 
  <localeOfInterest title="Las Vegas" contactRate="1.0" population="2000000"/> 
  <nationalY0Prime> 
    <primeSet key="2005-10-08"> 
      <values> 
        <value value="0.987627265394084" name="S"/> 
        <value value="0.00582" name="E"/> 
        <value value="0.0060" name="I"/> 
        <value value="5.52734605915761E-4" name="R"/> 
      </values> 
    </primeSet> 
Many more prime sets… 
  </nationalY0Prime> 
</scenario:Scenario> 
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Appendix C:  Required Simulator File Descriptions 

 

This file must reside in /home/sim/biomobility/<scenario name>/scenario.xmi 
Element name Attribute name Explanation 
scenario:Scenario begin Date upon which the simulation is to begin.  This not 

necessarily the first date in the input file.  The simulator 
will skip all input records that are prior to this date. 

 end Date upon which the simulation is to end.  This not 
necessarily the last date in the input file.  The simulator 
will skip all input records that are after to this date. 

 stepSize Expresses the degree of granularity the simulator uses with 
regard to time as expressed in minutes.   

 stepBack A span of time reaching back to before the begin date.  
The simulator uses this time span to ramp up the visitor 
population to a desired level for processing.  The value is 
expressed in minutes. 

 stayHome A percentage (e.g.  .25) by which the simulator will reduce 
the infectious population.  It is assumed that sick people 
will elect not to travel. 

 diseaseOfInterest The disease profile to use in processing this scenario.  It 
must match an entry in the resources/disease.xmi file or an 
error is thrown. 

 airportOfInterest The airport code of the locale of interest.   
Not used, deprecated 

 averageStayDuration Not used, deprecated 
 dataSource The essential input file.  This file is read from the 

directory /hdfs/sourcedata/<dataSource file name> 
 title Name of the scenario. Must match the name of the 

directory in which the scenario file resides. 
outbreak  Defines a local where an outbreak takes place. 
locale title Name of the outbreak locale. 
 contactRate ContactRate for the outbreak locale. 
 population Population of the outbreak locale.  Not used, deprecated 
y0Primes  Defines the set y0prime values for the outbreak locale.  

This element’s contents are structured that same as is 
nationalY0Prime below. 

localeOfInterest title Locale that is the center of the simulation.  E.g. Las 
Vegas. 

 contactRate ContactRate for the  locale. 
 population Population of the locale.  Not used, deprecated 
nationalY0Prime  Defines the set y0prime values for the nation.  Data values 

are taken from the CDC. 
primeSet key The date for which the values are applicable. 
values   
value name Name of the value. i.e. S,E,I, or R. 
 value The percentage of the population that is part of this stage 

at this time. 

  



 57 

Scenario.xmi Description 
 
Disease.xmi Description 
This file must reside in /home/sim/biomobility/resources/disease.xmi 
 

Element name Attribute name Explanation 
disease:Diseases   
disease title Name of the disease.  Must match the diseaseoOfInterest in 

the scenario.xmi file. 
 force Force of infection 
stages code S, E, I, or R 
 title Susceptible, Exposed, Infected, or Resistant.  Must correlate 

with the code. 
 ordinal Order of progression through the disease starting with zero. 
 duration The length of time expressed in minutes that one remins at 

this stage.  The value -1 indicates an indefinite period of 
time. 

 susceptible True or false is the person susceptible that this stage. 
 infected True or false is the person infected that this stage. 
 infectious True or false is the person infectious that this stage. 
 

Conf.xmi Description 
This file must reside in /home/sim/biomobility/<scenario name>/<run name>/conf.xmi 

Element name Attribute name Explanation 
conf:Configuration   
Slim, round, 
prime, split, 
progress, contact, 
depart, 
consolidate, and 
ioconsolidate 

NOTE: for best 
results, do not 
modify this file.  
Make a copy if  
you need a new 
one. 

gonogo True/false indicates whether or not to run this stage. 
i Always false 
o Always false 
w Always true 
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In the directory /home/sim/biomobility, any scenario whose name follows the pattern  
0506AMID or 0506IMIDBASE is a production scenario.  The others are not. 
In the directory /home/sim,  
 
iostate-mindx.xlsx A spreadsheet of the min, mid and max infectious departures. Flights only. 
Flights.png An image of the US showing the flights. 
 
In the directory /home/qq, the following are scripts that are potentially useful. 
 
go Runs a hadoop job. 
H Helps manipulate the hdfs (Hadoop Distributed File System).   

e.g.  –copyFrom Local <path to local disk> <path to hdfs> copies a file into the hdfs. 
 
Full list of commands: 
http://hadoop.apache.org/common/docs/r0.17.1/hdfs_shell.html 

clear Deletes all the hadoop logs on all nodes in the cluster. 
kill Kills a hadoop job. Requires the job number of the job you’re trying to kill as a parameter.  

Job numbers are output when a job starts. 
start Starts hadoop; all nodes. 
stop Stops hadoop; all nodes. 
shutdown Shutsdown the cluster. Requires either and –h or –r flag.  –h is for halt.  –r is for restart. 
envars Contains all environment variables.  Called by some of the other commands.  No called 

directly. 
slaveloop Iterates through the nodes in the cluster.  Called by some of the other commands.  No called 

directly. 
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Appendix D:  Miscellaneous 
 
State Space Model for SEIR in Three Cities 
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Variables 
Si, Sj, Sk  Susceptible population in each city Initial Value = 85% of population 
Ei, Ej, Ek  Exposed and latent population in each city Initial Value = 10% of population 
Ii, Ij, Ik   Infectious population in each city Initial Value = 5% of population 
Ri, Rj, Rk      Removed population in each city Initial Value = 0% of population 
Ni, Nj, Nk Total population in each city  Initial Value = 100% of population 
Constants 
Sigma      σ Leave Rate  =  20% 
Upsilon   υ Visit Rate =  10% 
Rho     ρ Return Rate = 10% 
Kappa      κ Contact Rate = 20/day 
Beta     β Transmission Rate = 2 new infections for every infective per day 
Epsilon   ε Infection Rate =  10% 
Gamma   γ Recovery Rate = 5 days 
Equations 
Ni = Si + Ei + Ii +Ri 
Nj = Sj + Ej + Ij +Rj 
Nk =Sk + Ek + Ik +Rk 

System of Differential Equations 

/* city I    SEIR */ 
dSi/dt = Sρki + Sρkj – Sσi – β * Si *Ii/Ni  
dEi/dt = Eρki + Eρkj – Eσi + κ* β * Si *Ii/Ni – εEi 
dIi/dt = Iρki + Iρkj – Iσi + εEi – γIi 
dRi/dt = Rρki + Rρkj - Rσi + γIi 

/*  city I leave equations   */ 
dSσi/dt = σ * Si 
dEσi/dt =  σ * Ei 
dIσi/dt =  σ * Ii 
dRσi/dt =  σ * Ri 

/*  city I leaving visitor, visit distribution equations   */ 
/* to city j */ 
dSυij/dt =  υ * Sσi 
dEυij/dt =  υ * Eσi 
dIυij/dt =  υ * Iσi 
dRυij/dt =  υ * Rσi 
/* to city k */ 
dSυik/dt =  υ * Sσi 
dEυik/dt =  υ * Eσi 
dIυik/dt =   υ * Iσi 
dRυik/dt =  υ * Rσi 
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/* city I returning visitor equations */ 
/* from city j */ 
dSρji/dt =  ρ * Sj 
dEρji/dt =  ρ * Ej 
dIρji/dt =  ρ * Ij 
dRρji/dt =  ρ * Rj 
 
/* from city k */ 
dSρki/dt =  ρ * Sk 
dEρki/dt =  ρ * Ek 
dIρki/dt =  ρ * Ik 
dRρki/dt =  ρ * Rk 
 
/* city J   SEIR */ 
dSj/dt = Sρkj + Sρij – Sσj – β * Sj *Ij/Nj  
dEj/dt = Eρkj + Eρij – Eσj + κ* β * Sj *Ij/Nj – εEj 
dIj/dt = Iρkj + Iρjj – Iσj + εEj – γIj 
dRj/dt = Rρkj + Rρij - Rσi + γIi 
/*  city I leave equations   */ 
dSσj/dt = σ * Sj 
dEσj/dt =  σ * Ej 
dIσj/dt =  σ * Ij 
dRσj/dt =  σ * Rj 
 
/*  city J leaving visitor, visit distribution equations   */ 
/* to city i */ 
dSυji/dt =  υ * Sσj 
dEυji/dt =  υ * Eσj 
dIυji/dt =  υ * Iσj 
dRυji/dt =  υ * Rσj 
 
/* to city k */ 
dSυjk/dt =  υ * Sσj 
dEυjk/dt =  υ * Eσj 
dIυjk/dt =   υ * Iσj 
dRυjk/dt =  υ * Rσj 
 
/* city J returning visitor equations */ 
/* from city i */ 
dSρij/dt =  ρ * Si 
dEρij/dt =  ρ * Ei 
dIρij/dt =  ρ * Ii 
dRρij/dt =  ρ * Ri 
 
/* from city k */ 
dSρkj/dt =  ρ * Sk 
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dEρkj/dt =  ρ * Ek 
dIρkj/dt =  ρ * Ik 
dRρkj/dt =  ρ * Rk 

/* city k   SEIR */ 
dSk/dt = Sρik + Sρjk – Sσk – β * Sk *Ik/Nk  
dEk/dt = Eρik + Eρjk – Eσk + κ* β * Sk *Ik/Nk – εEk 
dIk/dt = Iρik + Iρjk – Iσk + εEk – γIk 
dRk/dt = Rρik + Rρjk - Rσk + γIk 

/*  city k leave equations   */ 
dSσk/dt = σ * Sk 
dEσk/dt =  σ * Ek 
dIσk/dt =  σ * Ik 
dRσk/dt =  σ * Rk 

/*  city k leaving visitor, visit distribution equations   */ 
/* to city i */ 
dSυki/dt =  υ * Sσk 
dEυki/dt =  υ * Eσk 
dIυki/dt =  υ * Iσk 
dRυki/dt =  υ * Rσk 

/* to city j */ 
dSυkj/dt =  υ * Sσk 
dEυkj/dt =  υ * Eσk 
dIυkj/dt =   υ * Iσk 
dRυkj/dt =  υ * Rσk 

/* city k returning visitor equations */ 
/* from city i */ 
dSρik/dt =  ρ * Si 
dEρik/dt =  ρ * Ei 
dIρik/dt =  ρ * Ii 
dRρik/dt =  ρ * Ri 

/* from city j */ 
dSρjk/dt =  ρ * Sj 
dEρjk/dt =  ρ * Ej 
dIρjk/dt =  ρ * Ij 
dRρki/dt =  ρ * Rj 
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Compartment Model with Carrier Status to Reflect Subclinical Viral Shedding 

SEIR Eqns V10 test.nb 
In[1]:= 

This is an SECIR model with a compartment for CARRIER status between 
E and I to reflect infectivity before the onset of symptoms 

uses proportional mixing and inverse of days latent and duration 
arrivals and departures evenly split 

beta = effective contacts or transmission coefficient or replacement rate 
sigma = incubating 

lamda = duration of carrier infectivity 
gamma = duration of symptoms 

SEIR equations: 
ds dt =      bsi  n     .25 a .25 d
de dt =     bsi  n     1 Σ e     .25 a .25 d
dc dt =   1 Σ e     1 Λ  i     .25 a .25 d
di dt =     1 Σ c     1 Γ  i     .25 a .25 d
dr dt =     1 Γ i     .25 a       .25 d

Needs["PlotLegends`"]

Manipulate[
Plot[
Evaluate[
{s[t], e[t], c[t], i[t], r[t]}  . NDSolve[{s'[t] b   s[t]   i[t]    popln 

b   s[t]   c[t]    popln       .25   a .25   d  , s[1]   popln    1 , 
e'[t]      b   s[t]   i[t]     popln       1   Σ        e[t]      .25   a .25   d   , 
e[1]     1.0, 
c'[t] 1   Σ      e[t]      1   Λ      c[t]       .25   a .25   d   , c[1]   0, 
i'[t] 1   Λ      c[t]      1   Γ      i[t]       .25   a .25   d   , i[1]   0, 
r'[t]     1   Γ      i[t] .25   a .25   d  , r[1]    0}, 

{s , e, c, i, r}, {t, 0, 150}]     end NDSolve 

]  end Evaluate    , 
EvaluationMonitor:-Print["S =  ",s[t]" E =  ",e[t]  "I =  ",i[t]" R =    ",r[t]]

{t, 0.1, tmax}, 
PlotStyle �
{{Blue, Thick}, {Brown, Thick} , {Orange, Thick}, {Red, Thick}, { Green, Thick}} , 

PlotLegend � {"S", "E", "C", "I", "R"}, LegendPosition � {1.1,   0.4}]

(* end Plot *)

(* manipulation controls *)
, Delimiter 
, Style["population information", Bold]
, {{b, 0.79, "effective contacts"}, 
0, 20, 0.01, ImageSize � Tiny, Appearance � "Labeled"}
, {{popln, 300 000, "population"}, 150 000, 2 000 000, 1000, 
ImageSize � Tiny, Appearance � "Labeled"}
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, {{a, 100 000, "arrival rate"}, 50, 150 000, 1000, 
ImageSize � Tiny, Appearance � "Labeled"}
, {{d, 100 000, "departure rate"}, 50, 150 000, 1000, 
ImageSize � Tiny, Appearance � "Labeled"}

, Delimiter 
, Style["disease information", Bold]
, {{Σ, 3.0, "days incubating"}, 1, 20, 0.05, ImageSize � Tiny, Appearance � "Labeled"}
, {{Λ, 1.1, "days latent"}, 1, 20, 0.05, ImageSize � Tiny, Appearance � "Labeled"}
, {{Γ, 4.1, "days to recover"}, 1, 20, 0.05, ImageSize � Tiny, Appearance � "Labeled"}

, Delimiter 
, Style["chart information", Bold]
, {{tmax, 150, "outbreak in days"}, 
0.2, 300, 0.1, ImageSize � Tiny, Appearance � "Labeled"}

, {{vint, 1, "interval"}, 0.05, 1, 0.01, ImageSize � Tiny}
, ControlPlacement � Left, 
TrackedSymbols � Manipulate, AutorunSequencing � {1, 2, 3, 4, 5}

] (* end Manipulate *)

H* 
Rules 
DL >= 1.5 < 8 
DL:DR = from 1:0.7 to 1:1.2 
*L
SEIR Eqns v10 test SECIR.nb 3
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